Working with Engines and Connections¶
This section details direct usage of the Engine
,
Connection
, and related objects. Its important to note that when
using the SQLAlchemy ORM, these objects are not generally accessed; instead,
the Session
object is used as the interface to the database.
However, for applications that are built around direct usage of textual SQL
statements and/or SQL expression constructs without involvement by the ORM’s
higher level management services, the Engine
and
Connection
are king (and queen?) - read on.
Basic Usage¶
Recall from Engine Configuration that an Engine
is created via
the create_engine()
call:
engine = create_engine("mysql://scott:tiger@localhost/test")
The typical usage of create_engine()
is once per particular database
URL, held globally for the lifetime of a single application process. A single
Engine
manages many individual DBAPI connections on behalf of
the process and is intended to be called upon in a concurrent fashion. The
Engine
is not synonymous to the DBAPI connect
function, which
represents just one connection resource - the Engine
is most
efficient when created just once at the module level of an application, not
per-object or per-function call.
The most basic function of the Engine
is to provide access to a
Connection
, which can then invoke SQL statements. To emit
a textual statement to the database looks like:
from sqlalchemy import text
with engine.connect() as connection:
result = connection.execute(text("select username from users"))
for row in result:
print("username:", row["username"])
Above, the Engine.connect()
method returns a Connection
object, and by using it in a Python context manager (e.g. the with:
statement) the Connection.close()
method is automatically invoked at the
end of the block. The Connection
, is a proxy object for an
actual DBAPI connection. The DBAPI connection is retrieved from the connection
pool at the point at which Connection
is created.
The object returned is known as CursorResult
, which
references a DBAPI cursor and provides methods for fetching rows
similar to that of the DBAPI cursor. The DBAPI cursor will be closed
by the CursorResult
when all of its result rows (if any) are
exhausted. A CursorResult
that returns no rows, such as that of
an UPDATE statement (without any returned rows),
releases cursor resources immediately upon construction.
When the Connection
is closed at the end of the with:
block, the
referenced DBAPI connection is released to the connection pool. From
the perspective of the database itself, the connection pool will not actually
“close” the connection assuming the pool has room to store this connection for
the next use. When the connection is returned to the pool for re-use, the
pooling mechanism issues a rollback()
call on the DBAPI connection so that
any transactional state or locks are removed, and the connection is ready for
its next use.
Our example above illustrated the execution of a textual SQL string, which
should be invoked by using the text()
construct to indicate that
we’d like to use textual SQL. The Connection.execute()
method can of
course accommodate more than that, including the variety of SQL expression
constructs described in SQL Expression Language Tutorial (1.x API).
Using Transactions¶
Note
This section describes how to use transactions when working directly
with Engine
and Connection
objects. When using the
SQLAlchemy ORM, the public API for transaction control is via the
Session
object, which makes usage of the Transaction
object internally. See Managing Transactions for further
information.
The Connection
object provides a Connection.begin()
method which returns a Transaction
object. Like the Connection
itself, this object is usually used within a Python with:
block so
that its scope is managed:
with engine.connect() as connection:
with connection.begin():
r1 = connection.execute(table1.select())
connection.execute(table1.insert(), {"col1": 7, "col2": "this is some data"})
The above block can be stated more simply by using the Engine.begin()
method of Engine
:
# runs a transaction
with engine.begin() as connection:
r1 = connection.execute(table1.select())
connection.execute(table1.insert(), {"col1": 7, "col2": "this is some data"})
The block managed by each .begin()
method has the behavior such that
the transaction is committed when the block completes. If an exception is
raised, the transaction is instead rolled back, and the exception propagated
outwards.
The underlying object used to represent the transaction is the
Transaction
object. This object is returned by the
Connection.begin()
method and includes the methods
Transaction.commit()
and Transaction.rollback()
. The context
manager calling form, which invokes these methods automatically, is recommended
as a best practice.
Nesting of Transaction Blocks¶
Deprecated since version 1.4: The “transaction nesting” feature of SQLAlchemy is a legacy feature that is deprecated in the 1.4 release and will be removed in SQLAlchemy 2.0. The pattern has proven to be a little too awkward and complicated, unless an application makes more of a first-class framework around the behavior. See the following subsection Arbitrary Transaction Nesting as an Antipattern.
The Transaction
object also handles “nested” behavior by keeping
track of the outermost begin/commit pair. In this example, two functions both
issue a transaction on a Connection
, but only the outermost
Transaction
object actually takes effect when it is committed.
# method_a starts a transaction and calls method_b
def method_a(connection):
with connection.begin(): # open a transaction
method_b(connection)
# method_b also starts a transaction
def method_b(connection):
with connection.begin(): # open a transaction - this runs in the
# context of method_a's transaction
connection.execute(text("insert into mytable values ('bat', 'lala')"))
connection.execute(mytable.insert(), {"col1": "bat", "col2": "lala"})
# open a Connection and call method_a
with engine.connect() as conn:
method_a(conn)
Above, method_a
is called first, which calls connection.begin()
. Then
it calls method_b
. When method_b
calls connection.begin()
, it just
increments a counter that is decremented when it calls commit()
. If either
method_a
or method_b
calls rollback()
, the whole transaction is
rolled back. The transaction is not committed until method_a
calls the
commit()
method. This “nesting” behavior allows the creation of functions
which “guarantee” that a transaction will be used if one was not already
available, but will automatically participate in an enclosing transaction if
one exists.
Arbitrary Transaction Nesting as an Antipattern¶
With many years of experience, the above “nesting” pattern has not proven to be very popular, and where it has been observed in large projects such as Openstack, it tends to be complicated.
The most ideal way to organize an application would have a single, or at least very few, points at which the “beginning” and “commit” of all database transactions is demarcated. This is also the general idea discussed in terms of the ORM at When do I construct a Session, when do I commit it, and when do I close it?. To adapt the example from the previous section to this practice looks like:
# method_a calls method_b
def method_a(connection):
method_b(connection)
# method_b uses the connection and assumes the transaction
# is external
def method_b(connection):
connection.execute(text("insert into mytable values ('bat', 'lala')"))
connection.execute(mytable.insert(), {"col1": "bat", "col2": "lala"})
# open a Connection inside of a transaction and call method_a
with engine.begin() as conn:
method_a(conn)
That is, method_a()
and method_b()
do not deal with the details
of the transaction at all; the transactional scope of the connection is
defined externally to the functions that have a SQL dialogue with the
connection.
It may be observed that the above code has fewer lines, and less indentation
which tends to correlate with lower cyclomatic complexity. The
above code is organized such that method_a()
and method_b()
are always
invoked from a point at which a transaction is begun. The previous
version of the example features a method_a()
and a method_b()
that are
trying to be agnostic of this fact, which suggests they are prepared for
at least twice as many potential codepaths through them.
Migrating from the “nesting” pattern¶
As SQLAlchemy’s intrinsic-nested pattern is considered legacy, an application that for either legacy or novel reasons still seeks to have a context that automatically frames transactions should seek to maintain this functionality through the use of a custom Python context manager. A similar example is also provided in terms of the ORM in the “seealso” section below.
To provide backwards compatibility for applications that make use of this pattern, the following context manager or a similar implementation based on a decorator may be used:
import contextlib
@contextlib.contextmanager
def transaction(connection):
if not connection.in_transaction():
with connection.begin():
yield connection
else:
yield connection
The above contextmanager would be used as:
# method_a starts a transaction and calls method_b
def method_a(connection):
with transaction(connection): # open a transaction
method_b(connection)
# method_b either starts a transaction, or uses the one already
# present
def method_b(connection):
with transaction(connection): # open a transaction
connection.execute(text("insert into mytable values ('bat', 'lala')"))
connection.execute(mytable.insert(), {"col1": "bat", "col2": "lala"})
# open a Connection and call method_a
with engine.connect() as conn:
method_a(conn)
A similar approach may be taken such that connectivity is established on demand as well; the below approach features a single-use context manager that accesses an enclosing state in order to test if connectivity is already present:
import contextlib
def connectivity(engine):
connection = None
@contextlib.contextmanager
def connect():
nonlocal connection
if connection is None:
connection = engine.connect()
with connection:
with connection.begin():
yield connection
else:
yield connection
return connect
Using the above would look like:
# method_a passes along connectivity context, at the same time
# it chooses to establish a connection by calling "with"
def method_a(connectivity):
with connectivity():
method_b(connectivity)
# method_b also wants to use a connection from the context, so it
# also calls "with:", but also it actually uses the connection.
def method_b(connectivity):
with connectivity() as connection:
connection.execute(text("insert into mytable values ('bat', 'lala')"))
connection.execute(mytable.insert(), {"col1": "bat", "col2": "lala"})
# create a new connection/transaction context object and call
# method_a
method_a(connectivity(engine))
The above context manager acts not only as a “transaction” context but also
as a context that manages having an open connection against a particular
Engine
. When using the ORM Session
, this
connectivty management is provided by the Session
itself.
An overview of ORM connectivity patterns is at Managing Transactions.
See also
Migrating from the “subtransaction” pattern - ORM version
Library Level (e.g. emulated) Autocommit¶
Deprecated since version 1.4: The “autocommit” feature of SQLAlchemy Core is deprecated and will not be present in version 2.0 of SQLAlchemy. DBAPI-level AUTOCOMMIT is now widely available which offers superior performance and occurs transparently. See Library-level (but not driver level) “Autocommit” removed from both Core and ORM for background.
Note
This section discusses the feature within SQLAlchemy that automatically
invokes the .commit()
method on a DBAPI connection, however this is against
a DBAPI connection that is itself transactional. For true AUTOCOMMIT,
see the next section Setting Transaction Isolation Levels including DBAPI Autocommit.
The previous transaction example illustrates how to use Transaction
so that several executions can take part in the same transaction. What happens
when we issue an INSERT, UPDATE or DELETE call without using
Transaction
? While some DBAPI
implementations provide various special “non-transactional” modes, the core
behavior of DBAPI per PEP-0249 is that a transaction is always in progress,
providing only rollback()
and commit()
methods but no begin()
.
SQLAlchemy assumes this is the case for any given DBAPI.
Given this requirement, SQLAlchemy implements its own “autocommit” feature which
works completely consistently across all backends. This is achieved by
detecting statements which represent data-changing operations, i.e. INSERT,
UPDATE, DELETE, as well as data definition language (DDL) statements such as
CREATE TABLE, ALTER TABLE, and then issuing a COMMIT automatically if no
transaction is in progress. The detection is based on the presence of the
autocommit=True
execution option on the statement. If the statement
is a text-only statement and the flag is not set, a regular expression is used
to detect INSERT, UPDATE, DELETE, as well as a variety of other commands
for a particular backend:
conn = engine.connect()
conn.execute(text("INSERT INTO users VALUES (1, 'john')")) # autocommits
The “autocommit” feature is only in effect when no Transaction
has
otherwise been declared. This means the feature is not generally used with
the ORM, as the Session
object by default always maintains an
ongoing Transaction
.
Full control of the “autocommit” behavior is available using the generative
Connection.execution_options()
method provided on Connection
and Engine
, using the “autocommit” flag which will
turn on or off the autocommit for the selected scope. For example, a
text()
construct representing a stored procedure that commits might use
it so that a SELECT statement will issue a COMMIT:
with engine.connect().execution_options(autocommit=True) as conn:
conn.execute(text("SELECT my_mutating_procedure()"))
Setting Transaction Isolation Levels including DBAPI Autocommit¶
Most DBAPIs support the concept of configurable transaction isolation levels. These are traditionally the four levels “READ UNCOMMITTED”, “READ COMMITTED”, “REPEATABLE READ” and “SERIALIZABLE”. These are usually applied to a DBAPI connection before it begins a new transaction, noting that most DBAPIs will begin this transaction implicitly when SQL statements are first emitted.
DBAPIs that support isolation levels also usually support the concept of true “autocommit”, which means that the DBAPI connection itself will be placed into a non-transactional autocommit mode. This usually means that the typical DBAPI behavior of emitting “BEGIN” to the database automatically no longer occurs, but it may also include other directives. SQLAlchemy treats the concept of “autocommit” like any other isolation level; in that it is an isolation level that loses not only “read committed” but also loses atomicity.
Tip
It is important to note, as will be discussed further in the section below at
Understanding the DBAPI-Level Autocommit Isolation Level, that “autocommit” isolation level like
any other isolation level does not affect the “transactional” behavior of
the Connection
object, which continues to call upon DBAPI
.commit()
and .rollback()
methods (they just have no effect under
autocommit), and for which the .begin()
method assumes the DBAPI will
start a transaction implicitly (which means that SQLAlchemy’s “begin” does
not change autocommit mode).
SQLAlchemy dialects should support these isolation levels as well as autocommit
to as great a degree as possible. The levels are set via family of
“execution_options” parameters and methods that are throughout the Core, such
as the Connection.execution_options()
method. The parameter is
known as Connection.execution_options.isolation_level
and
the values are strings which are typically a subset of the following names:
# possible values for Connection.execution_options(isolation_level="<value>")
"AUTOCOMMIT"
"READ COMMITTED"
"READ UNCOMMITTED"
"REPEATABLE READ"
"SERIALIZABLE"
Not every DBAPI supports every value; if an unsupported value is used for a certain backend, an error is raised.
For example, to force REPEATABLE READ on a specific connection, then begin a transaction:
with engine.connect().execution_options(isolation_level="REPEATABLE READ") as connection:
with connection.begin():
connection.execute(<statement>)
Note
The return value of
the Connection.execution_options()
method is a so-called
“branched” connection under the SQLAlchemy 1.x series when not using
create_engine.future
mode, which is a shallow
copy of the original Connection
object. Despite this,
the isolation_level
execution option applies to the
original Connection
object and all “branches” overall.
When using create_engine.future
mode (i.e. 2.0 style
usage), the concept of these so-called “branched” connections is removed,
and Connection.execution_options()
returns the same
Connection
object without creating any copies.
The Connection.execution_options.isolation_level
option may
also be set engine wide, as is often preferable. This is achieved by
passing it within the create_engine.execution_options
parameter to create_engine()
:
from sqlalchemy import create_engine
eng = create_engine(
"postgresql://scott:tiger@localhost/test",
execution_options={"isolation_level": "REPEATABLE READ"},
)
With the above setting, the DBAPI connection will be set to use a
"REPEATABLE READ"
isolation level setting for each new transaction
begun.
An application that frequently chooses to run operations within different
isolation levels may wish to create multiple “sub-engines” of a lead
Engine
, each of which will be configured to a different
isolation level. One such use case is an application that has operations
that break into “transactional” and “read-only” operations, a separate
Engine
that makes use of "AUTOCOMMIT"
may be
separated off from the main engine:
from sqlalchemy import create_engine
eng = create_engine("postgresql://scott:tiger@localhost/test")
autocommit_engine = eng.execution_options(isolation_level="AUTOCOMMIT")
Above, the Engine.execution_options()
method creates a shallow
copy of the original Engine
. Both eng
and
autocommit_engine
share the same dialect and connection pool. However, the
“AUTOCOMMIT” mode will be set upon connections when they are acquired from the
autocommit_engine
.
The isolation level setting, regardless of which one it is, is unconditionally reverted when a connection is returned to the connection pool.
Note
The Connection.execution_options.isolation_level
parameter necessarily does not apply to statement level options, such as
that of Executable.execution_options()
. This because the option
must be set on a DBAPI connection on a per-transaction basis.
See also
SQLite Transaction Isolation
PostgreSQL Transaction Isolation
MySQL Transaction Isolation
SQL Server Transaction Isolation
Setting Transaction Isolation Levels / DBAPI AUTOCOMMIT - for the ORM
Using DBAPI Autocommit Allows for a Readonly Version of Transparent Reconnect - a recipe that uses DBAPI autocommit to transparently reconnect to the database for read-only operations
Understanding the DBAPI-Level Autocommit Isolation Level¶
In the parent section, we introduced the concept of the Connection.execution_options.isolation_level
parameter and how it can be used to set database isolation levels, including
DBAPI-level “autocommit” which is treated by SQLAlchemy as another transaction
isolation level. In this section we will attempt to clarify the implications
of this approach.
If we wanted to check out a Connection
object and use it
“autocommit” mode, we would proceed as follows:
with engine.connect() as connection:
connection.execution_options(isolation_level="AUTOCOMMIT")
connection.execute(<statement>)
connection.execute(<statement>)
Above illustrates normal usage of “DBAPI autocommit” mode. There is no
need to make use of methods such as Connection.begin()
or Connection.commit()
(noting the latter applies to 2.0 style usage).
What’s important to note however is that the above autocommit mode is
persistent on that particular Connection until we change it directly using
isolation_level again. The isolation level is also reset on the DBAPI
connection when we release the connection
back to the connection pool. However, calling upon Connection.begin()
will not change the isolation level, meaning we stay in autocommit. The
example below illustrates this:
with engine.connect() as connection:
connection = connection.execution_options(isolation_level="AUTOCOMMIT")
# this begin() does nothing, isolation stays at AUTOCOMMIT
with connection.begin() as trans:
connection.execute(<statement>)
connection.execute(<statement>)
When we run a block like the above with logging turned on, the logging
will attempt to indicate that while a DBAPI level .commit()
is called,
it probably will have no effect due to autocommit mode:
INFO sqlalchemy.engine.Engine BEGIN (implicit)
...
INFO sqlalchemy.engine.Engine COMMIT using DBAPI connection.commit(), DBAPI should ignore due to autocommit mode
Similarly, when using 2.0 style create_engine.future
mode, the Connection
will use autobegin
behavior, meaning that the pattern below will raise an error:
engine = create_engine(..., future=True)
with engine.connect() as connection:
connection = connection.execution_options(isolation_level="AUTOCOMMIT")
# "transaction" is autobegin (but has no effect due to autocommit)
connection.execute(<statement>)
# this will raise; "transaction" is already begun
with connection.begin() as trans:
connection.execute(<statement>)
This is all to demonstrate that the autocommit isolation level setting is
completely independent from the begin/commit behavior of the SQLAlchemy
Connection object. The “autocommit” mode will not interact with Connection.begin()
in any way and the Connection
does not consult this status
when performing its own state changes with regards to the transaction (with
the exception of suggesting within engine logging that these blocks are not
actually committing). The rationale for this design is to maintain a
completely consistent usage pattern with the Connection
where
DBAPI-autocommit mode can be changed independently without indicating any code
changes elsewhere.
Isolation level settings, including autocommit mode, are reset automatically
when the connection is released back to the connection pool. Therefore it is
preferable to avoid trying to switch isolation levels on a single
Connection
object as this leads to excess verbosity.
To illustrate how to use “autocommit” in an ad-hoc mode within the scope of a
single Connection
checkout, the
Connection.execution_options.isolation_level
parameter
must be re-applied with the previous isolation level.
We can write our above block “correctly” as (noting 2.0 style usage below):
# if we wanted to flip autocommit on and off on a single connection/
# which... we usually don't.
engine = create_engine(..., future=True)
with engine.connect() as connection:
connection.execution_options(isolation_level="AUTOCOMMIT")
# run statement(s) in autocommit mode
connection.execute(<statement>)
# "commit" the autobegun "transaction" (2.0/future mode only)
connection.commit()
# switch to default isolation level
connection.execution_options(isolation_level=connection.default_isolation_level)
# use a begin block
with connection.begin() as trans:
connection.execute(<statement>)
Above, to manually revert the isolation level we made use of
Connection.default_isolation_level
to restore the default
isolation level (assuming that’s what we want here). However, it’s
probably a better idea to work with the architecture of of the
Connection
which already handles resetting of isolation level
automatically upon checkin. The preferred way to write the above is to
use two blocks
engine = create_engine(..., future=True)
# use an autocommit block
with engine.connect().execution_options(isolation_level="AUTOCOMMIT") as connection:
# run statement in autocommit mode
connection.execute(<statement>)
# use a regular block
with engine.begin() as connection:
connection.execute(<statement>)
To sum up:
“DBAPI level autocommit” isolation level is entirely independent of the
Connection
object’s notion of “begin” and “commit”use individual
Connection
checkouts per isolation level. Avoid trying to change back and forth between “autocommit” on a single connection checkout; let the engine do the work of restoring default isolation levels
Using Server Side Cursors (a.k.a. stream results)¶
Some backends feature explicit support for the concept of “server side cursors” versus “client side cursors”. A client side cursor here means that the database driver fully fetches all rows from a result set into memory before returning from a statement execution. Drivers such as those of PostgreSQL and MySQL/MariaDB generally use client side cursors by default. A server side cursor, by contrast, indicates that result rows remain pending within the database server’s state as result rows are consumed by the client. The drivers for Oracle generally use a “server side” model, for example, and the SQLite dialect, while not using a real “client / server” architecture, still uses an unbuffered result fetching approach that will leave result rows outside of process memory before they are consumed.
From this basic architecture it follows that a “server side cursor” is more memory efficient when fetching very large result sets, while at the same time may introduce more complexity in the client/server communication process and be less efficient for small result sets (typically less than 10000 rows).
For those dialects that have conditional support for buffered or unbuffered results, there are usually caveats to the use of the “unbuffered”, or server side cursor mode. When using the psycopg2 dialect for example, an error is raised if a server side cursor is used with any kind of DML or DDL statement. When using MySQL drivers with a server side cursor, the DBAPI connection is in a more fragile state and does not recover as gracefully from error conditions nor will it allow a rollback to proceed until the cursor is fully closed.
For this reason, SQLAlchemy’s dialects will always default to the less error prone version of a cursor, which means for PostgreSQL and MySQL dialects it defaults to a buffered, “client side” cursor where the full set of results is pulled into memory before any fetch methods are called from the cursor. This mode of operation is appropriate in the vast majority of cases; unbuffered cursors are not generally useful except in the uncommon case of an application fetching a very large number of rows in chunks, where the processing of these rows can be complete before more rows are fetched.
For database drivers that provide client and server side cursor options,
the Connection.execution_options.stream_results
and Connection.execution_options.yield_per
execution
options provide access to “server side cursors” on a per-Connection
or per-statement basis. Similar options exist when using an ORM
Session
as well.
Streaming with a fixed buffer via yield_per¶
As individual row-fetch operations with fully unbuffered server side cursors
are typically more expensive than fetching batches of rows at once, The
Connection.execution_options.yield_per
execution option
configures a Connection
or statement to make use of
server-side cursors as are available, while at the same time configuring a
fixed-size buffer of rows that will retrieve rows from the server in batches as
they are consumed. This parameter may be to a positive integer value using the
Connection.execution_options()
method on
Connection
or on a statement using the
Executable.execution_options()
method.
New in version 1.4.40: Connection.execution_options.yield_per
as a
Core-only option is new as of SQLAlchemy 1.4.40; for prior 1.4 versions,
use Connection.execution_options.stream_results
directly in combination with Result.yield_per()
.
Using this option is equivalent to manually setting the
Connection.execution_options.stream_results
option,
described in the next section, and then invoking the
Result.yield_per()
method on the Result
object with the given integer value. In both cases, the effect this
combination has includes:
server side cursors mode is selected for the given backend, if available and not already the default behavior for that backend
as result rows are fetched, they will be buffered in batches, where the size of each batch up until the last batch will be equal to the integer argument passed to the
Connection.execution_options.yield_per
option or theResult.yield_per()
method; the last batch is then sized against the remaining rows fewer than this sizeThe default partition size used by the
Result.partitions()
method, if used, will be made equal to this integer size as well.
These three behaviors are illustrated in the example below:
with engine.connect() as conn:
result = conn.execution_options(yield_per=100).execute(text("select * from table"))
for partition in result.partitions():
# partition is an iterable that will be at most 100 items
for row in partition:
print(f"{row}")
The above example illustrates the combination of yield_per=100
along
with using the Result.partitions()
method to run processing
on rows in batches that match the size fetched from the server. The
use of Result.partitions()
is optional, and if the
Result
is iterated directly, a new batch of rows will be
buffered for each 100 rows fetched. Calling a method such as
Result.all()
should not be used, as this will fully
fetch all remaining rows at once and defeat the purpose of using yield_per
.
The Connection.execution_options.yield_per
option
is portable to the ORM as well, used by a Session
to fetch
ORM objects, where it also limits the amount of ORM objects generated at once.
See the section Fetching Large Result Sets with Yield Per - in the ORM Querying Guide
for further background on using
Connection.execution_options.yield_per
with the ORM.
New in version 1.4.40: Added
Connection.execution_options.yield_per
as a Core level execution option to conveniently set streaming results,
buffer size, and partition size all at once in a manner that is transferrable
to that of the ORM’s similar use case.
Streaming with a dynamically growing buffer using stream_results¶
To enable server side cursors without a specific partition size, the
Connection.execution_options.stream_results
option may be
used, which like Connection.execution_options.yield_per
may
be called on the Connection
object or the statement object.
When a Result
object delivered using the
Connection.execution_options.stream_results
option
is iterated directly, rows are fetched internally
using a default buffering scheme that buffers first a small set of rows,
then a larger and larger buffer on each fetch up to a pre-configured limit
of 1000 rows. The maximum size of this buffer can be affected using the
Connection.execution_options.max_row_buffer
execution option:
with engine.connect() as conn:
conn = conn.execution_options(stream_results=True, max_row_buffer=100)
result = conn.execute(text("select * from table"))
for row in result:
print(f"{row}")
While the Connection.execution_options.stream_results
option may be combined with use of the Result.partitions()
method, a specific partition size should be passed to
Result.partitions()
so that the entire result is not fetched.
It is usually more straightforward to use the
Connection.execution_options.yield_per
option when setting
up to use the Result.partitions()
method.
See also
Fetching Large Result Sets with Yield Per - in the ORM Querying Guide
Result.partitions()
Result.yield_per()
Connectionless Execution, Implicit Execution¶
Deprecated since version 2.0: The features of “connectionless” and “implicit” execution in SQLAlchemy are deprecated and will be removed in version 2.0. See “Implicit” and “Connectionless” execution, “bound metadata” removed for background.
Recall from the first section we mentioned executing with and without explicit
usage of Connection
. “Connectionless” execution
refers to the usage of the execute()
method on an object
which is not a Connection
. This was illustrated using the
Engine.execute()
method of Engine
:
result = engine.execute(text("select username from users"))
for row in result:
print("username:", row["username"])
In addition to “connectionless” execution, it is also possible
to use the Executable.execute()
method of
any Executable
construct, which is a marker for SQL expression objects
that support execution. The SQL expression object itself references an
Engine
or Connection
known as the bind, which it uses
in order to provide so-called “implicit” execution services.
Given a table as below:
from sqlalchemy import MetaData, Table, Column, Integer
metadata_obj = MetaData()
users_table = Table(
"users",
metadata_obj,
Column("id", Integer, primary_key=True),
Column("name", String(50)),
)
Explicit execution delivers the SQL text or constructed SQL expression to the
Connection.execute()
method of Connection
:
engine = create_engine('sqlite:///file.db')
with engine.connect() as connection:
result = connection.execute(users_table.select())
for row in result:
# ....
Explicit, connectionless execution delivers the expression to the
Engine.execute()
method of Engine
:
engine = create_engine('sqlite:///file.db')
result = engine.execute(users_table.select())
for row in result:
# ....
result.close()
Implicit execution is also connectionless, and makes usage of the Executable.execute()
method
on the expression itself. This method is provided as part of the
Executable
class, which refers to a SQL statement that is sufficient
for being invoked against the database. The method makes usage of
the assumption that either an
Engine
or
Connection
has been bound to the expression
object. By “bound” we mean that the special attribute MetaData.bind
has been used to associate a series of
Table
objects and all SQL constructs derived from them with a specific
engine:
engine = create_engine('sqlite:///file.db')
metadata_obj.bind = engine
result = users_table.select().execute()
for row in result:
# ....
result.close()
Above, we associate an Engine
with a MetaData
object using
the special attribute MetaData.bind
. The select()
construct produced
from the Table
object has a method Executable.execute()
, which will
search for an Engine
that’s “bound” to the Table
.
Overall, the usage of “bound metadata” has three general effects:
SQL statement objects gain an
Executable.execute()
method which automatically locates a “bind” with which to execute themselves.The ORM
Session
object supports using “bound metadata” in order to establish whichEngine
should be used to invoke SQL statements on behalf of a particular mapped class, though theSession
also features its own explicit system of establishing complexEngine
/ mapped class configurations.The
MetaData.create_all()
,MetaData.drop_all()
,Table.create()
,Table.drop()
, and “autoload” features all make usage of the boundEngine
automatically without the need to pass it explicitly.
Note
The concepts of “bound metadata” and “implicit execution” are not emphasized in modern SQLAlchemy. While they offer some convenience, they are no longer required by any API and are never necessary.
In applications where multiple Engine
objects are present, each one logically associated
with a certain set of tables (i.e. vertical sharding), the “bound metadata” technique can be used
so that individual Table
can refer to the appropriate Engine
automatically;
in particular this is supported within the ORM via the Session
object
as a means to associate Table
objects with an appropriate Engine
,
as an alternative to using the bind arguments accepted directly by the Session
.
However, the “implicit execution” technique is not at all appropriate for use with the
ORM, as it bypasses the transactional context maintained by the Session
.
Overall, in the vast majority of cases, “bound metadata” and “implicit execution” are not useful. While “bound metadata” has a marginal level of usefulness with regards to ORM configuration, “implicit execution” is a very old usage pattern that in most cases is more confusing than it is helpful, and its usage is discouraged. Both patterns seem to encourage the overuse of expedient “short cuts” in application design which lead to problems later on.
Modern SQLAlchemy usage, especially the ORM, places a heavy stress on working within the context
of a transaction at all times; the “implicit execution” concept makes the job of
associating statement execution with a particular transaction much more difficult.
The Executable.execute()
method on a particular SQL statement
usually implies that the execution is not part of any particular transaction, which is
usually not the desired effect.
In both “connectionless” examples, the
Connection
is created behind the scenes; the
CursorResult
returned by the execute()
call references the Connection
used to issue
the SQL statement. When the CursorResult
is closed, the underlying
Connection
is closed for us, resulting in the
DBAPI connection being returned to the pool with transactional resources removed.
Translation of Schema Names¶
To support multi-tenancy applications that distribute common sets of tables
into multiple schemas, the
Connection.execution_options.schema_translate_map
execution option may be used to repurpose a set of Table
objects
to render under different schema names without any changes.
Given a table:
user_table = Table(
"user",
metadata_obj,
Column("id", Integer, primary_key=True),
Column("name", String(50)),
)
The “schema” of this Table
as defined by the
Table.schema
attribute is None
. The
Connection.execution_options.schema_translate_map
can specify
that all Table
objects with a schema of None
would instead
render the schema as user_schema_one
:
connection = engine.connect().execution_options(
schema_translate_map={None: "user_schema_one"}
)
result = connection.execute(user_table.select())
The above code will invoke SQL on the database of the form:
SELECT user_schema_one.user.id, user_schema_one.user.name FROM
user_schema_one.user
That is, the schema name is substituted with our translated name. The map can specify any number of target->destination schemas:
connection = engine.connect().execution_options(
schema_translate_map={
None: "user_schema_one", # no schema name -> "user_schema_one"
"special": "special_schema", # schema="special" becomes "special_schema"
"public": None, # Table objects with schema="public" will render with no schema
}
)
The Connection.execution_options.schema_translate_map
parameter
affects all DDL and SQL constructs generated from the SQL expression language,
as derived from the Table
or Sequence
objects.
It does not impact literal string SQL used via the text()
construct nor via plain strings passed to Connection.execute()
.
The feature takes effect only in those cases where the name of the
schema is derived directly from that of a Table
or Sequence
;
it does not impact methods where a string schema name is passed directly.
By this pattern, it takes effect within the “can create” / “can drop” checks
performed by methods such as MetaData.create_all()
or
MetaData.drop_all()
are called, and it takes effect when
using table reflection given a Table
object. However it does
not affect the operations present on the Inspector
object,
as the schema name is passed to these methods explicitly.
Tip
To use the schema translation feature with the ORM Session
,
set this option at the level of the Engine
, then pass that engine
to the Session
. The Session
uses a new
Connection
for each transaction:
schema_engine = engine.execution_options(schema_translate_map={...})
session = Session(schema_engine)
...
Warning
When using the ORM Session
without extensions, the schema
translate feature is only supported as
a single schema translate map per Session. It will not work if
different schema translate maps are given on a per-statement basis, as
the ORM Session
does not take current schema translate
values into account for individual objects.
To use a single Session
with multiple schema_translate_map
configurations, the Horizontal Sharding extension may
be used. See the example at Horizontal Sharding.
New in version 1.1.
SQL Compilation Caching¶
New in version 1.4: SQLAlchemy now has a transparent query caching system that substantially lowers the Python computational overhead involved in converting SQL statement constructs into SQL strings across both Core and ORM. See the introduction at Transparent SQL Compilation Caching added to All DQL, DML Statements in Core, ORM.
SQLAlchemy includes a comprehensive caching system for the SQL compiler as well
as its ORM variants. This caching system is transparent within the
Engine
and provides that the SQL compilation process for a given Core
or ORM SQL statement, as well as related computations which assemble
result-fetching mechanics for that statement, will only occur once for that
statement object and all others with the identical
structure, for the duration that the particular structure remains within the
engine’s “compiled cache”. By “statement objects that have the identical
structure”, this generally corresponds to a SQL statement that is
constructed within a function and is built each time that function runs:
def run_my_statement(connection, parameter):
stmt = select(table)
stmt = stmt.where(table.c.col == parameter)
stmt = stmt.order_by(table.c.id)
return connection.execute(stmt)
The above statement will generate SQL resembling
SELECT id, col FROM table WHERE col = :col ORDER BY id
, noting that
while the value of parameter
is a plain Python object such as a string
or an integer, the string SQL form of the statement does not include this
value as it uses bound parameters. Subsequent invocations of the above
run_my_statement()
function will use a cached compilation construct
within the scope of the connection.execute()
call for enhanced performance.
Note
it is important to note that the SQL compilation cache is caching the SQL string that is passed to the database only, and not the data returned by a query. It is in no way a data cache and does not impact the results returned for a particular SQL statement nor does it imply any memory use linked to fetching of result rows.
While SQLAlchemy has had a rudimentary statement cache since the early 1.x series, and additionally has featured the “Baked Query” extension for the ORM, both of these systems required a high degree of special API use in order for the cache to be effective. The new cache as of 1.4 is instead completely automatic and requires no change in programming style to be effective.
The cache is automatically used without any configurational changes and no special steps are needed in order to enable it. The following sections detail the configuration and advanced usage patterns for the cache.
Configuration¶
The cache itself is a dictionary-like object called an LRUCache
, which is
an internal SQLAlchemy dictionary subclass that tracks the usage of particular
keys and features a periodic “pruning” step which removes the least recently
used items when the size of the cache reaches a certain threshold. The size
of this cache defaults to 500 and may be configured using the
create_engine.query_cache_size
parameter:
engine = create_engine("postgresql://scott:tiger@localhost/test", query_cache_size=1200)
The size of the cache can grow to be a factor of 150% of the size given, before it’s pruned back down to the target size. A cache of size 1200 above can therefore grow to be 1800 elements in size at which point it will be pruned to 1200.
The sizing of the cache is based on a single entry per unique SQL statement rendered, per engine. SQL statements generated from both the Core and the ORM are treated equally. DDL statements will usually not be cached. In order to determine what the cache is doing, engine logging will include details about the cache’s behavior, described in the next section.
Estimating Cache Performance Using Logging¶
The above cache size of 1200 is actually fairly large. For small applications,
a size of 100 is likely sufficient. To estimate the optimal size of the cache,
assuming enough memory is present on the target host, the size of the cache
should be based on the number of unique SQL strings that may be rendered for the
target engine in use. The most expedient way to see this is to use
SQL echoing, which is most directly enabled by using the
create_engine.echo
flag, or by using Python logging; see the
section Configuring Logging for background on logging configuration.
As an example, we will examine the logging produced by the following program:
from sqlalchemy import Column
from sqlalchemy import create_engine
from sqlalchemy import ForeignKey
from sqlalchemy import Integer
from sqlalchemy import String
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship
from sqlalchemy.orm import Session
Base = declarative_base()
class A(Base):
__tablename__ = "a"
id = Column(Integer, primary_key=True)
data = Column(String)
bs = relationship("B")
class B(Base):
__tablename__ = "b"
id = Column(Integer, primary_key=True)
a_id = Column(ForeignKey("a.id"))
data = Column(String)
e = create_engine("sqlite://", echo=True)
Base.metadata.create_all(e)
s = Session(e)
s.add_all([A(bs=[B(), B(), B()]), A(bs=[B(), B(), B()]), A(bs=[B(), B(), B()])])
s.commit()
for a_rec in s.query(A):
print(a_rec.bs)
When run, each SQL statement that’s logged will include a bracketed cache statistics badge to the left of the parameters passed. The four types of message we may see are summarized as follows:
[raw sql]
- the driver or the end-user emitted raw SQL usingConnection.exec_driver_sql()
- caching does not apply[no key]
- the statement object is a DDL statement that is not cached, or the statement object contains uncacheable elements such as user-defined constructs or arbitrarily large VALUES clauses.[generated in Xs]
- the statement was a cache miss and had to be compiled, then stored in the cache. it took X seconds to produce the compiled construct. The number X will be in the small fractional seconds.[cached since Xs ago]
- the statement was a cache hit and did not have to be recompiled. The statement has been stored in the cache since X seconds ago. The number X will be proportional to how long the application has been running and how long the statement has been cached, so for example would be 86400 for a 24 hour period.
Each badge is described in more detail below.
The first statements we see for the above program will be the SQLite dialect checking for the existence of the “a” and “b” tables:
INFO sqlalchemy.engine.Engine PRAGMA temp.table_info("a")
INFO sqlalchemy.engine.Engine [raw sql] ()
INFO sqlalchemy.engine.Engine PRAGMA main.table_info("b")
INFO sqlalchemy.engine.Engine [raw sql] ()
For the above two SQLite PRAGMA statements, the badge reads [raw sql]
,
which indicates the driver is sending a Python string directly to the
database using Connection.exec_driver_sql()
. Caching does not apply
to such statements because they already exist in string form, and there
is nothing known about what kinds of result rows will be returned since
SQLAlchemy does not parse SQL strings ahead of time.
The next statements we see are the CREATE TABLE statements:
INFO sqlalchemy.engine.Engine
CREATE TABLE a (
id INTEGER NOT NULL,
data VARCHAR,
PRIMARY KEY (id)
)
INFO sqlalchemy.engine.Engine [no key 0.00007s] ()
INFO sqlalchemy.engine.Engine
CREATE TABLE b (
id INTEGER NOT NULL,
a_id INTEGER,
data VARCHAR,
PRIMARY KEY (id),
FOREIGN KEY(a_id) REFERENCES a (id)
)
INFO sqlalchemy.engine.Engine [no key 0.00006s] ()
For each of these statements, the badge reads [no key 0.00006s]
. This
indicates that these two particular statements, caching did not occur because
the DDL-oriented CreateTable
construct did not produce a
cache key. DDL constructs generally do not participate in caching because
they are not typically subject to being repeated a second time and DDL
is also a database configurational step where performance is not as critical.
The [no key]
badge is important for one other reason, as it can be produced
for SQL statements that are cacheable except for some particular sub-construct
that is not currently cacheable. Examples of this include custom user-defined
SQL elements that don’t define caching parameters, as well as some constructs
that generate arbitrarily long and non-reproducible SQL strings, the main
examples being the Values
construct as well as when using “multivalued
inserts” with the Insert.values()
method.
So far our cache is still empty. The next statements will be cached however, a segment looks like:
INFO sqlalchemy.engine.Engine INSERT INTO a (data) VALUES (?)
INFO sqlalchemy.engine.Engine [generated in 0.00011s] (None,)
INFO sqlalchemy.engine.Engine INSERT INTO a (data) VALUES (?)
INFO sqlalchemy.engine.Engine [cached since 0.0003533s ago] (None,)
INFO sqlalchemy.engine.Engine INSERT INTO a (data) VALUES (?)
INFO sqlalchemy.engine.Engine [cached since 0.0005326s ago] (None,)
INFO sqlalchemy.engine.Engine INSERT INTO b (a_id, data) VALUES (?, ?)
INFO sqlalchemy.engine.Engine [generated in 0.00010s] (1, None)
INFO sqlalchemy.engine.Engine INSERT INTO b (a_id, data) VALUES (?, ?)
INFO sqlalchemy.engine.Engine [cached since 0.0003232s ago] (1, None)
INFO sqlalchemy.engine.Engine INSERT INTO b (a_id, data) VALUES (?, ?)
INFO sqlalchemy.engine.Engine [cached since 0.0004887s ago] (1, None)
Above, we see essentially two unique SQL strings; "INSERT INTO a (data) VALUES (?)"
and "INSERT INTO b (a_id, data) VALUES (?, ?)"
. Since SQLAlchemy uses
bound parameters for all literal values, even though these statements are
repeated many times for different objects, because the parameters are separate,
the actual SQL string stays the same.
Note
the above two statements are generated by the ORM unit of work process, and in fact will be caching these in a separate cache that is local to each mapper. However the mechanics and terminology are the same. The section Disabling or using an alternate dictionary to cache some (or all) statements below will describe how user-facing code can also use an alternate caching container on a per-statement basis.
The caching badge we see for the first occurrence of each of these two
statements is [generated in 0.00011s]
. This indicates that the statement
was not in the cache, was compiled into a String in .00011s and was then
cached. When we see the [generated]
badge, we know that this means
there was a cache miss. This is to be expected for the first occurrence of
a particular statement. However, if lots of new [generated]
badges are
observed for a long-running application that is generally using the same series
of SQL statements over and over, this may be a sign that the
create_engine.query_cache_size
parameter is too small. When a
statement that was cached is then evicted from the cache due to the LRU
cache pruning lesser used items, it will display the [generated]
badge
when it is next used.
The caching badge that we then see for the subsequent occurrences of each of
these two statements looks like [cached since 0.0003533s ago]
. This
indicates that the statement was found in the cache, and was originally
placed into the cache .0003533 seconds ago. It is important to note that
while the [generated]
and [cached since]
badges refer to a number of
seconds, they mean different things; in the case of [generated]
, the number
is a rough timing of how long it took to compile the statement, and will be an
extremely small amount of time. In the case of [cached since]
, this is
the total time that a statement has been present in the cache. For an
application that’s been running for six hours, this number may read [cached
since 21600 seconds ago]
, and that’s a good thing. Seeing high numbers for
“cached since” is an indication that these statements have not been subject to
cache misses for a long time. Statements that frequently have a low number of
“cached since” even if the application has been running a long time may
indicate these statements are too frequently subject to cache misses, and that
the
create_engine.query_cache_size
may need to be increased.
Our example program then performs some SELECTs where we can see the same pattern of “generated” then “cached”, for the SELECT of the “a” table as well as for subsequent lazy loads of the “b” table:
INFO sqlalchemy.engine.Engine SELECT a.id AS a_id, a.data AS a_data
FROM a
INFO sqlalchemy.engine.Engine [generated in 0.00009s] ()
INFO sqlalchemy.engine.Engine SELECT b.id AS b_id, b.a_id AS b_a_id, b.data AS b_data
FROM b
WHERE ? = b.a_id
INFO sqlalchemy.engine.Engine [generated in 0.00010s] (1,)
INFO sqlalchemy.engine.Engine SELECT b.id AS b_id, b.a_id AS b_a_id, b.data AS b_data
FROM b
WHERE ? = b.a_id
INFO sqlalchemy.engine.Engine [cached since 0.0005922s ago] (2,)
INFO sqlalchemy.engine.Engine SELECT b.id AS b_id, b.a_id AS b_a_id, b.data AS b_data
FROM b
WHERE ? = b.a_id
From our above program, a full run shows a total of four distinct SQL strings being cached. Which indicates a cache size of four would be sufficient. This is obviously an extremely small size, and the default size of 500 is fine to be left at its default.
How much memory does the cache use?¶
The previous section detailed some techniques to check if the
create_engine.query_cache_size
needs to be bigger. How do we know
if the cache is not too large? The reason we may want to set
create_engine.query_cache_size
to not be higher than a certain
number would be because we have an application that may make use of a very large
number of different statements, such as an application that is building queries
on the fly from a search UX, and we don’t want our host to run out of memory
if for example, a hundred thousand different queries were run in the past 24 hours
and they were all cached.
It is extremely difficult to measure how much memory is occupied by Python
data structures, however using a process to measure growth in memory via top
as a
successive series of 250 new statements are added to the cache suggest a
moderate Core statement takes up about 12K while a small ORM statement takes about
20K, including result-fetching structures which for the ORM will be much greater.
Disabling or using an alternate dictionary to cache some (or all) statements¶
The internal cache used is known as LRUCache
, but this is mostly just
a dictionary. Any dictionary may be used as a cache for any series of
statements by using the Connection.execution_options.compiled_cache
option as an execution option. Execution options may be set on a statement,
on an Engine
or Connection
, as well as
when using the ORM Session.execute()
method for SQLAlchemy-2.0
style invocations. For example, to run a series of SQL statements and have
them cached in a particular dictionary:
my_cache = {}
with engine.connect().execution_options(compiled_cache=my_cache) as conn:
conn.execute(table.select())
The SQLAlchemy ORM uses the above technique to hold onto per-mapper caches
within the unit of work “flush” process that are separate from the default
cache configured on the Engine
, as well as for some
relationship loader queries.
The cache can also be disabled with this argument by sending a value of
None
:
# disable caching for this connection
with engine.connect().execution_options(compiled_cache=None) as conn:
conn.execute(table.select())
Caching for Third Party Dialects¶
The caching feature requires that the dialect’s compiler produces SQL
strings that are safe to reuse for many statement invocations, given
a particular cache key that is keyed to that SQL string. This means
that any literal values in a statement, such as the LIMIT/OFFSET values for
a SELECT, can not be hardcoded in the dialect’s compilation scheme, as
the compiled string will not be re-usable. SQLAlchemy supports rendered
bound parameters using the BindParameter.render_literal_execute()
method which can be applied to the existing Select._limit_clause
and
Select._offset_clause
attributes by a custom compiler, which
are illustrated later in this section.
As there are many third party dialects, many of which may be generating literal
values from SQL statements without the benefit of the newer “literal execute”
feature, SQLAlchemy as of version 1.4.5 has added an attribute to dialects
known as Dialect.supports_statement_cache
. This attribute is
checked at runtime for its presence directly on a particular dialect’s class,
even if it’s already present on a superclass, so that even a third party
dialect that subclasses an existing cacheable SQLAlchemy dialect such as
sqlalchemy.dialects.postgresql.PGDialect
must still explicitly include this
attribute for caching to be enabled. The attribute should only be enabled
once the dialect has been altered as needed and tested for reusability of
compiled SQL statements with differing parameters.
For all third party dialects that don’t support this attribute, the logging for
such a dialect will indicate dialect does not support caching
.
When a dialect has been tested against caching, and in particular the SQL compiler has been updated to not render any literal LIMIT / OFFSET within a SQL string directly, dialect authors can apply the attribute as follows:
from sqlalchemy.engine.default import DefaultDialect
class MyDialect(DefaultDialect):
supports_statement_cache = True
The flag needs to be applied to all subclasses of the dialect as well:
class MyDBAPIForMyDialect(MyDialect):
supports_statement_cache = True
New in version 1.4.5: Added the Dialect.supports_statement_cache
attribute.
The typical case for dialect modification follows.
Example: Rendering LIMIT / OFFSET with post compile parameters¶
As an example, suppose a dialect overrides the SQLCompiler.limit_clause()
method, which produces the “LIMIT / OFFSET” clause for a SQL statement,
like this:
# pre 1.4 style code
def limit_clause(self, select, **kw):
text = ""
if select._limit is not None:
text += " \n LIMIT %d" % (select._limit,)
if select._offset is not None:
text += " \n OFFSET %d" % (select._offset,)
return text
The above routine renders the Select._limit
and
Select._offset
integer values as literal integers embedded in the SQL
statement. This is a common requirement for databases that do not support using
a bound parameter within the LIMIT/OFFSET clauses of a SELECT statement.
However, rendering the integer value within the initial compilation stage is
directly incompatible with caching as the limit and offset integer values
of a Select
object are not part of the cache key, so that many
Select
statements with different limit/offset values would not render
with the correct value.
The correction for the above code is to move the literal integer into
SQLAlchemy’s post-compile facility, which will render the
literal integer outside of the initial compilation stage, but instead at
execution time before the statement is sent to the DBAPI. This is accessed
within the compilation stage using the BindParameter.render_literal_execute()
method, in conjunction with using the Select._limit_clause
and
Select._offset_clause
attributes, which represent the LIMIT/OFFSET
as a complete SQL expression, as follows:
# 1.4 cache-compatible code
def limit_clause(self, select, **kw):
text = ""
limit_clause = select._limit_clause
offset_clause = select._offset_clause
if select._simple_int_clause(limit_clause):
text += " \n LIMIT %s" % (
self.process(limit_clause.render_literal_execute(), **kw)
)
elif limit_clause is not None:
# assuming the DB doesn't support SQL expressions for LIMIT.
# Otherwise render here normally
raise exc.CompileError(
"dialect 'mydialect' can only render simple integers for LIMIT"
)
if select._simple_int_clause(offset_clause):
text += " \n OFFSET %s" % (
self.process(offset_clause.render_literal_execute(), **kw)
)
elif offset_clause is not None:
# assuming the DB doesn't support SQL expressions for OFFSET.
# Otherwise render here normally
raise exc.CompileError(
"dialect 'mydialect' can only render simple integers for OFFSET"
)
return text
The approach above will generate a compiled SELECT statement that looks like:
SELECT x FROM y
LIMIT __[POSTCOMPILE_param_1]
OFFSET __[POSTCOMPILE_param_2]
Where above, the __[POSTCOMPILE_param_1]
and __[POSTCOMPILE_param_2]
indicators will be populated with their corresponding integer values at
statement execution time, after the SQL string has been retrieved from the
cache.
After changes like the above have been made as appropriate, the
Dialect.supports_statement_cache
flag should be set to True
.
It is strongly recommended that third party dialects make use of the
dialect third party test suite
which will assert that operations like
SELECTs with LIMIT/OFFSET are correctly rendered and cached.
See also
Why is my application slow after upgrading to 1.4 and/or 2.x? - in the Frequently Asked Questions section
Using Lambdas to add significant speed gains to statement production¶
Deep Alchemy
This technique is generally non-essential except in very performance intensive scenarios, and intended for experienced Python programmers. While fairly straightforward, it involves metaprogramming concepts that are not appropriate for novice Python developers. The lambda approach can be applied to at a later time to existing code with a minimal amount of effort.
Python functions, typically expressed as lambdas, may be used to generate SQL expressions which are cacheable based on the Python code location of the lambda function itself as well as the closure variables within the lambda. The rationale is to allow caching of not only the SQL string-compiled form of a SQL expression construct as is SQLAlchemy’s normal behavior when the lambda system isn’t used, but also the in-Python composition of the SQL expression construct itself, which also has some degree of Python overhead.
The lambda SQL expression feature is available as a performance enhancing
feature, and is also optionally used in the with_loader_criteria()
ORM option in order to provide a generic SQL fragment.
Synopsis¶
Lambda statements are constructed using the lambda_stmt()
function,
which returns an instance of StatementLambdaElement
, which is
itself an executable statement construct. Additional modifiers and criteria
are added to the object using the Python addition operator +
, or
alternatively the StatementLambdaElement.add_criteria()
method which
allows for more options.
It is assumed that the lambda_stmt()
construct is being invoked
within an enclosing function or method that expects to be used many times
within an application, so that subsequent executions beyond the first one
can take advantage of the compiled SQL being cached. When the lambda is
constructed inside of an enclosing function in Python it is then subject
to also having closure variables, which are significant to the whole
approach:
from sqlalchemy import lambda_stmt
def run_my_statement(connection, parameter):
stmt = lambda_stmt(lambda: select(table))
stmt += lambda s: s.where(table.c.col == parameter)
stmt += lambda s: s.order_by(table.c.id)
return connection.execute(stmt)
with engine.connect() as conn:
result = run_my_statement(some_connection, "some parameter")
Above, the three lambda
callables that are used to define the structure
of a SELECT statement are invoked exactly once, and the resulting SQL
string cached in the compilation cache of the engine. From that point
forward, the run_my_statement()
function may be invoked any number
of times and the lambda
callables within it will not be called, only
used as cache keys to retrieve the already-compiled SQL.
Note
It is important to note that there is already SQL caching in place when the lambda system is not used. The lambda system only adds an additional layer of work reduction per SQL statement invoked by caching the building up of the SQL construct itself and also using a simpler cache key.
Quick Guidelines for Lambdas¶
Above all, the emphasis within the lambda SQL system is ensuring that there
is never a mismatch between the cache key generated for a lambda and the
SQL string it will produce. The LamdaElement
and related
objects will run and analyze the given lambda in order to calculate how
it should be cached on each run, trying to detect any potential problems.
Basic guidelines include:
Any kind of statement is supported - while it’s expected that
select()
constructs are the prime use case forlambda_stmt()
, DML statements such asinsert()
andupdate()
are equally usable:def upd(id_, newname): stmt = lambda_stmt(lambda: users.update()) stmt += lambda s: s.values(name=newname) stmt += lambda s: s.where(users.c.id == id_) return stmt with engine.begin() as conn: conn.execute(upd(7, "foo"))
ORM use cases directly supported as well - the
lambda_stmt()
can accommodate ORM functionality completely and used directly withSession.execute()
:def select_user(session, name): stmt = lambda_stmt(lambda: select(User)) stmt += lambda s: s.where(User.name == name) row = session.execute(stmt).first() return row
Bound parameters are automatically accommodated - in contrast to SQLAlchemy’s previous “baked query” system, the lambda SQL system accommodates for Python literal values which become SQL bound parameters automatically. This means that even though a given lambda runs only once, the values that become bound parameters are extracted from the closure of the lambda on every run:
>>> def my_stmt(x, y): ... stmt = lambda_stmt(lambda: select(func.max(x, y))) ... return stmt >>> engine = create_engine("sqlite://", echo=True) >>> with engine.connect() as conn: ... print(conn.scalar(my_stmt(5, 10))) ... print(conn.scalar(my_stmt(12, 8)))
SELECT max(?, ?) AS max_1 [generated in 0.00057s] (5, 10)10SELECT max(?, ?) AS max_1 [cached since 0.002059s ago] (12, 8)12Above,
StatementLambdaElement
extracted the values ofx
andy
from the closure of the lambda that is generated each timemy_stmt()
is invoked; these were substituted into the cached SQL construct as the values of the parameters.The lambda should ideally produce an identical SQL structure in all cases - Avoid using conditionals or custom callables inside of lambdas that might make it produce different SQL based on inputs; if a function might conditionally use two different SQL fragments, use two separate lambdas:
# **Don't** do this: def my_stmt(parameter, thing=False): stmt = lambda_stmt(lambda: select(table)) stmt += ( lambda s: s.where(table.c.x > parameter) if thing else s.where(table.c.y == parameter) return stmt # **Do** do this: def my_stmt(parameter, thing=False): stmt = lambda_stmt(lambda: select(table)) if thing: stmt += lambda s: s.where(table.c.x > parameter) else: stmt += lambda s: s.where(table.c.y == parameter) return stmt
There are a variety of failures which can occur if the lambda does not produce a consistent SQL construct and some are not trivially detectable right now.
Don’t use functions inside the lambda to produce bound values - the bound value tracking approach requires that the actual value to be used in the SQL statement be locally present in the closure of the lambda. This is not possible if values are generated from other functions, and the
LambdaElement
should normally raise an error if this is attempted:>>> def my_stmt(x, y): ... def get_x(): ... return x ... ... def get_y(): ... return y ... ... stmt = lambda_stmt(lambda: select(func.max(get_x(), get_y()))) ... return stmt >>> with engine.connect() as conn: ... print(conn.scalar(my_stmt(5, 10))) Traceback (most recent call last): # ... sqlalchemy.exc.InvalidRequestError: Can't invoke Python callable get_x() inside of lambda expression argument at <code object <lambda> at 0x7fed15f350e0, file "<stdin>", line 6>; lambda SQL constructs should not invoke functions from closure variables to produce literal values since the lambda SQL system normally extracts bound values without actually invoking the lambda or any functions within it.
Above, the use of
get_x()
andget_y()
, if they are necessary, should occur outside of the lambda and assigned to a local closure variable:>>> def my_stmt(x, y): ... def get_x(): ... return x ... ... def get_y(): ... return y ... ... x_param, y_param = get_x(), get_y() ... stmt = lambda_stmt(lambda: select(func.max(x_param, y_param))) ... return stmt
Avoid referring to non-SQL constructs inside of lambdas as they are not cacheable by default - this issue refers to how the
LambdaElement
creates a cache key from other closure variables within the statement. In order to provide the best guarantee of an accurate cache key, all objects located in the closure of the lambda are considered to be significant, and none will be assumed to be appropriate for a cache key by default. So the following example will also raise a rather detailed error message:>>> class Foo: ... def __init__(self, x, y): ... self.x = x ... self.y = y >>> def my_stmt(foo): ... stmt = lambda_stmt(lambda: select(func.max(foo.x, foo.y))) ... return stmt >>> with engine.connect() as conn: ... print(conn.scalar(my_stmt(Foo(5, 10)))) Traceback (most recent call last): # ... sqlalchemy.exc.InvalidRequestError: Closure variable named 'foo' inside of lambda callable <code object <lambda> at 0x7fed15f35450, file "<stdin>", line 2> does not refer to a cacheable SQL element, and also does not appear to be serving as a SQL literal bound value based on the default SQL expression returned by the function. This variable needs to remain outside the scope of a SQL-generating lambda so that a proper cache key may be generated from the lambda's state. Evaluate this variable outside of the lambda, set track_on=[<elements>] to explicitly select closure elements to track, or set track_closure_variables=False to exclude closure variables from being part of the cache key.
The above error indicates that
LambdaElement
will not assume that theFoo
object passed in will continue to behave the same in all cases. It also won’t assume it can useFoo
as part of the cache key by default; if it were to use theFoo
object as part of the cache key, if there were many differentFoo
objects this would fill up the cache with duplicate information, and would also hold long-lasting references to all of these objects.The best way to resolve the above situation is to not refer to
foo
inside of the lambda, and refer to it outside instead:>>> def my_stmt(foo): ... x_param, y_param = foo.x, foo.y ... stmt = lambda_stmt(lambda: select(func.max(x_param, y_param))) ... return stmt
In some situations, if the SQL structure of the lambda is guaranteed to never change based on input, to pass
track_closure_variables=False
which will disable any tracking of closure variables other than those used for bound parameters:>>> def my_stmt(foo): ... stmt = lambda_stmt( ... lambda: select(func.max(foo.x, foo.y)), track_closure_variables=False ... ) ... return stmt
There is also the option to add objects to the element to explicitly form part of the cache key, using the
track_on
parameter; using this parameter allows specific values to serve as the cache key and will also prevent other closure variables from being considered. This is useful for cases where part of the SQL being constructed originates from a contextual object of some sort that may have many different values. In the example below, the first segment of the SELECT statement will disable tracking of thefoo
variable, whereas the second segment will explicitly trackself
as part of the cache key:>>> def my_stmt(self, foo): ... stmt = lambda_stmt( ... lambda: select(*self.column_expressions), track_closure_variables=False ... ) ... stmt = stmt.add_criteria(lambda: self.where_criteria, track_on=[self]) ... return stmt
Using
track_on
means the given objects will be stored long term in the lambda’s internal cache and will have strong references for as long as the cache doesn’t clear out those objects (an LRU scheme of 1000 entries is used by default).
Cache Key Generation¶
In order to understand some of the options and behaviors which occur with lambda SQL constructs, an understanding of the caching system is helpful.
SQLAlchemy’s caching system normally generates a cache key from a given SQL expression construct by producing a structure that represents all the state within the construct:
>>> from sqlalchemy import select, column
>>> stmt = select(column("q"))
>>> cache_key = stmt._generate_cache_key()
>>> print(cache_key) # somewhat paraphrased
CacheKey(key=(
'0',
<class 'sqlalchemy.sql.selectable.Select'>,
'_raw_columns',
(
(
'1',
<class 'sqlalchemy.sql.elements.ColumnClause'>,
'name',
'q',
'type',
(
<class 'sqlalchemy.sql.sqltypes.NullType'>,
),
),
),
# a few more elements are here, and many more for a more
# complicated SELECT statement
),)
The above key is stored in the cache which is essentially a dictionary, and the value is a construct that among other things stores the string form of the SQL statement, in this case the phrase “SELECT q”. We can observe that even for an extremely short query the cache key is pretty verbose as it has to represent everything that may vary about what’s being rendered and potentially executed.
The lambda construction system by contrast creates a different kind of cache key:
>>> from sqlalchemy import lambda_stmt
>>> stmt = lambda_stmt(lambda: select(column("q")))
>>> cache_key = stmt._generate_cache_key()
>>> print(cache_key)
CacheKey(key=(
<code object <lambda> at 0x7fed1617c710, file "<stdin>", line 1>,
<class 'sqlalchemy.sql.lambdas.StatementLambdaElement'>,
),)
Above, we see a cache key that is vastly shorter than that of the non-lambda
statement, and additionally that production of the select(column("q"))
construct itself was not even necessary; the Python lambda itself contains
an attribute called __code__
which refers to a Python code object that
within the runtime of the application is immutable and permanent.
When the lambda also includes closure variables, in the normal case that these variables refer to SQL constructs such as column objects, they become part of the cache key, or if they refer to literal values that will be bound parameters, they are placed in a separate element of the cache key:
>>> def my_stmt(parameter):
... col = column("q")
... stmt = lambda_stmt(lambda: select(col))
... stmt += lambda s: s.where(col == parameter)
... return stmt
The above StatementLambdaElement
includes two lambdas, both
of which refer to the col
closure variable, so the cache key will
represent both of these segments as well as the column()
object:
>>> stmt = my_stmt(5)
>>> key = stmt._generate_cache_key()
>>> print(key)
CacheKey(key=(
<code object <lambda> at 0x7f07323c50e0, file "<stdin>", line 3>,
(
'0',
<class 'sqlalchemy.sql.elements.ColumnClause'>,
'name',
'q',
'type',
(
<class 'sqlalchemy.sql.sqltypes.NullType'>,
),
),
<code object <lambda> at 0x7f07323c5190, file "<stdin>", line 4>,
<class 'sqlalchemy.sql.lambdas.LinkedLambdaElement'>,
(
'0',
<class 'sqlalchemy.sql.elements.ColumnClause'>,
'name',
'q',
'type',
(
<class 'sqlalchemy.sql.sqltypes.NullType'>,
),
),
(
'0',
<class 'sqlalchemy.sql.elements.ColumnClause'>,
'name',
'q',
'type',
(
<class 'sqlalchemy.sql.sqltypes.NullType'>,
),
),
),)
The second part of the cache key has retrieved the bound parameters that will be used when the statement is invoked:
>>> key.bindparams
[BindParameter('%(139668884281280 parameter)s', 5, type_=Integer())]
For a series of examples of “lambda” caching with performance comparisons, see the “short_selects” test suite within the Performance performance example.
Engine Disposal¶
The Engine
refers to a connection pool, which means under normal
circumstances, there are open database connections present while the
Engine
object is still resident in memory. When an Engine
is garbage collected, its connection pool is no longer referred to by
that Engine
, and assuming none of its connections are still checked
out, the pool and its connections will also be garbage collected, which has the
effect of closing out the actual database connections as well. But otherwise,
the Engine
will hold onto open database connections assuming
it uses the normally default pool implementation of QueuePool
.
The Engine
is intended to normally be a permanent
fixture established up-front and maintained throughout the lifespan of an
application. It is not intended to be created and disposed on a
per-connection basis; it is instead a registry that maintains both a pool
of connections as well as configurational information about the database
and DBAPI in use, as well as some degree of internal caching of per-database
resources.
However, there are many cases where it is desirable that all connection resources
referred to by the Engine
be completely closed out. It’s
generally not a good idea to rely on Python garbage collection for this
to occur for these cases; instead, the Engine
can be explicitly disposed using
the Engine.dispose()
method. This disposes of the engine’s
underlying connection pool and replaces it with a new one that’s empty.
Provided that the Engine
is discarded at this point and no longer used, all checked-in connections
which it refers to will also be fully closed.
Valid use cases for calling Engine.dispose()
include:
When a program wants to release any remaining checked-in connections held by the connection pool and expects to no longer be connected to that database at all for any future operations.
When a program uses multiprocessing or
fork()
, and anEngine
object is copied to the child process,Engine.dispose()
should be called so that the engine creates brand new database connections local to that fork. Database connections generally do not travel across process boundaries. Use theEngine.dispose.close
parameter set to False in this case. See the section Using Connection Pools with Multiprocessing or os.fork() for more background on this use case.Within test suites or multitenancy scenarios where many ad-hoc, short-lived
Engine
objects may be created and disposed.
Connections that are checked out are not discarded when the
engine is disposed or garbage collected, as these connections are still
strongly referenced elsewhere by the application.
However, after Engine.dispose()
is called, those
connections are no longer associated with that Engine
; when they
are closed, they will be returned to their now-orphaned connection pool
which will ultimately be garbage collected, once all connections which refer
to it are also no longer referenced anywhere.
Since this process is not easy to control, it is strongly recommended that
Engine.dispose()
is called only after all checked out connections
are checked in or otherwise de-associated from their pool.
An alternative for applications that are negatively impacted by the
Engine
object’s use of connection pooling is to disable pooling
entirely. This typically incurs only a modest performance impact upon the
use of new connections, and means that when a connection is checked in,
it is entirely closed out and is not held in memory. See Switching Pool Implementations
for guidelines on how to disable pooling.
Working with Driver SQL and Raw DBAPI Connections¶
The introduction on using Connection.execute()
made use of the
text()
construct in order to illustrate how textual SQL statements
may be invoked. When working with SQLAlchemy, textual SQL is actually more
of the exception rather than the norm, as the Core expression language
and the ORM both abstract away the textual representation of SQL. However, the
text()
construct itself also provides some abstraction of textual
SQL in that it normalizes how bound parameters are passed, as well as that
it supports datatyping behavior for parameters and result set rows.
Invoking SQL strings directly to the driver¶
For the use case where one wants to invoke textual SQL directly passed to the
underlying driver (known as the DBAPI) without any intervention
from the text()
construct, the Connection.exec_driver_sql()
method may be used:
with engine.connect() as conn:
conn.exec_driver_sql("SET param='bar'")
New in version 1.4: Added the Connection.exec_driver_sql()
method.
Working with the DBAPI cursor directly¶
There are some cases where SQLAlchemy does not provide a genericized way at accessing some DBAPI functions, such as calling stored procedures as well as dealing with multiple result sets. In these cases, it’s just as expedient to deal with the raw DBAPI connection directly.
The most common way to access the raw DBAPI connection is to get it
from an already present Connection
object directly. It is
present using the Connection.connection
attribute:
connection = engine.connect()
dbapi_conn = connection.connection
The DBAPI connection here is actually a “proxied” in terms of the
originating connection pool, however this is an implementation detail
that in most cases can be ignored. As this DBAPI connection is still
contained within the scope of an owning Connection
object, it is
best to make use of the Connection
object for most features such
as transaction control as well as calling the Connection.close()
method; if these operations are performed on the DBAPI connection directly,
the owning Connection
will not be aware of these changes in state.
To overcome the limitations imposed by the DBAPI connection that is
maintained by an owning Connection
, a DBAPI connection is also
available without the need to procure a
Connection
first, using the Engine.raw_connection()
method
of Engine
:
dbapi_conn = engine.raw_connection()
This DBAPI connection is again a “proxied” form as was the case before.
The purpose of this proxying is now apparent, as when we call the .close()
method of this connection, the DBAPI connection is typically not actually
closed, but instead released back to the
engine’s connection pool:
dbapi_conn.close()
While SQLAlchemy may in the future add built-in patterns for more DBAPI use cases, there are diminishing returns as these cases tend to be rarely needed and they also vary highly dependent on the type of DBAPI in use, so in any case the direct DBAPI calling pattern is always there for those cases where it is needed.
See also
How do I get at the raw DBAPI connection when using an Engine? - includes additional details about how the DBAPI connection is accessed as well as the “driver” connection when using asyncio drivers.
Some recipes for DBAPI connection use follow.
Calling Stored Procedures and User Defined Functions¶
SQLAlchemy supports calling stored procedures and user defined functions several ways. Please note that all DBAPIs have different practices, so you must consult your underlying DBAPI’s documentation for specifics in relation to your particular usage. The following examples are hypothetical and may not work with your underlying DBAPI.
For stored procedures or functions with special syntactical or parameter concerns, DBAPI-level callproc may potentially be used with your DBAPI. An example of this pattern is:
connection = engine.raw_connection()
try:
cursor_obj = connection.cursor()
cursor_obj.callproc("my_procedure", ["x", "y", "z"])
results = list(cursor_obj.fetchall())
cursor_obj.close()
connection.commit()
finally:
connection.close()
Note
Not all DBAPIs use callproc and overall usage details will vary. The above example is only an illustration of how it might look to use a particular DBAPI function.
Your DBAPI may not have a callproc
requirement or may require a stored
procedure or user defined function to be invoked with another pattern, such as
normal SQLAlchemy connection usage. One example of this usage pattern is,
at the time of this documentation’s writing, executing a stored procedure in
the PostgreSQL database with the psycopg2 DBAPI, which should be invoked
with normal connection usage:
connection.execute("CALL my_procedure();")
This above example is hypothetical. The underlying database is not guaranteed to support “CALL” or “SELECT” in these situations, and the keyword may vary dependent on the function being a stored procedure or a user defined function. You should consult your underlying DBAPI and database documentation in these situations to determine the correct syntax and patterns to use.
Multiple Result Sets¶
Multiple result set support is available from a raw DBAPI cursor using the nextset method:
connection = engine.raw_connection()
try:
cursor_obj = connection.cursor()
cursor_obj.execute("select * from table1; select * from table2")
results_one = cursor_obj.fetchall()
cursor_obj.nextset()
results_two = cursor_obj.fetchall()
cursor_obj.close()
finally:
connection.close()
Registering New Dialects¶
The create_engine()
function call locates the given dialect
using setuptools entrypoints. These entry points can be established
for third party dialects within the setup.py script. For example,
to create a new dialect “foodialect://”, the steps are as follows:
Create a package called
foodialect
.The package should have a module containing the dialect class, which is typically a subclass of
sqlalchemy.engine.default.DefaultDialect
. In this example let’s say it’s calledFooDialect
and its module is accessed viafoodialect.dialect
.The entry point can be established in setup.py as follows:
entry_points = """ [sqlalchemy.dialects] foodialect = foodialect.dialect:FooDialect """
If the dialect is providing support for a particular DBAPI on top of
an existing SQLAlchemy-supported database, the name can be given
including a database-qualification. For example, if FooDialect
were in fact a MySQL dialect, the entry point could be established like this:
entry_points = """
[sqlalchemy.dialects]
mysql.foodialect = foodialect.dialect:FooDialect
"""
The above entrypoint would then be accessed as create_engine("mysql+foodialect://")
.
Registering Dialects In-Process¶
SQLAlchemy also allows a dialect to be registered within the current process, bypassing
the need for separate installation. Use the register()
function as follows:
from sqlalchemy.dialects import registry
registry.register("mysql.foodialect", "myapp.dialect", "MyMySQLDialect")
The above will respond to create_engine("mysql+foodialect://")
and load the
MyMySQLDialect
class from the myapp.dialect
module.