What’s New in SQLAlchemy 1.4?

About this Document

This document describes changes between SQLAlchemy version 1.3 and SQLAlchemy version 1.4.

Version 1.4 is taking on a different focus than other SQLAlchemy releases in that it is in many ways attempting to serve as a potential migration point for a more dramatic series of API changes currently planned for release 2.0 of SQLAlchemy. The focus of SQLAlchemy 2.0 is a modernized and slimmed down API that removes lots of usage patterns that have long been discouraged, as well as mainstreams the best ideas in SQLAlchemy as first class API features, with the goal being that there is much less ambiguity in how the API is to be used, as well as that a series of implicit behaviors and rarely-used API flags that complicate the internals and hinder performance will be removed.

For the current status of SQLAlchemy 2.0, see Migrating to SQLAlchemy 2.0.

Major API changes and features - General

Python 3.6 is the minimum Python 3 version; Python 2.7 still supported

As Python 3.5 reached EOL in September of 2020, SQLAlchemy 1.4 now places version 3.6 as the minimum Python 3 version. Python 2.7 is still supported, however the SQLAlchemy 1.4 series will be the last series to support Python 2.

ORM Query is internally unified with select, update, delete; 2.0 style execution available

The biggest conceptual change to SQLAlchemy for version 2.0 and essentially in 1.4 as well is that the great separation between the Select construct in Core and the Query object in the ORM has been removed, as well as between the Query.update() and Query.delete() methods in how they relate to Update and Delete.

With regards to Select and Query, these two objects have for many versions had similar, largely overlapping APIs and even some ability to change between one and the other, while remaining very different in their usage patterns and behaviors. The historical background for this was that the Query object was introduced to overcome shortcomings in the Select object which used to be at the core of how ORM objects were queried, except that they had to be queried in terms of Table metadata only. However Query had only a simplistic interface for loading objects, and only over the course of many major releases did it eventually gain most of the flexibility of the Select object, which then led to the ongoing awkwardness that these two objects became highly similar yet still largely incompatible with each other.

In version 1.4, all Core and ORM SELECT statements are rendered from a Select object directly; when the Query object is used, at statement invocation time it copies its state to a Select which is then invoked internally using 2.0 style execution. Going forward, the Query object will become legacy only, and applications will be encouraged to move to 2.0 style execution which allows Core constructs to be used freely against ORM entities:

with Session(engine, future=True) as sess:

    stmt = (
        select(User)
        .where(User.name == "sandy")
        .join(User.addresses)
        .where(Address.email_address.like("%gmail%"))
    )

    result = sess.execute(stmt)

    for user in result.scalars():
        print(user)

Things to note about the above example:

Throughout SQLAlchemy’s documentation, there will be many references to 1.x style and 2.0 style execution. This is to distinguish between the two querying styles and to attempt to forwards-document the new calling style going forward. In SQLAlchemy 2.0, while the Query object may remain as a legacy construct, it will no longer be featured in most documentation.

Similar adjustments have been made to “bulk updates and deletes” such that Core update() and delete() can be used for bulk operations. A bulk update like the following:

session.query(User).filter(User.name == "sandy").update(
    {"password": "foobar"}, synchronize_session="fetch"
)

can now be achieved in 2.0 style (and indeed the above runs internally in this way) as follows:

with Session(engine, future=True) as sess:
    stmt = (
        update(User)
        .where(User.name == "sandy")
        .values(password="foobar")
        .execution_options(synchronize_session="fetch")
    )

    sess.execute(stmt)

Note the use of the Executable.execution_options() method to pass ORM-related options. The use of “execution options” is now much more prevalent within both Core and ORM, and many ORM-related methods from Query are now implemented as execution options (see Query.execution_options() for some examples).

#5159

Transparent SQL Compilation Caching added to All DQL, DML Statements in Core, ORM

One of the most broadly encompassing changes to ever land in a single SQLAlchemy version, a many-month reorganization and refactoring of all querying systems from the base of Core all the way through ORM now allows the majority of Python computation involved producing SQL strings and related statement metadata from a user-constructed statement to be cached in memory, such that subsequent invocations of an identical statement construct will use 35-60% fewer CPU resources.

This caching goes beyond the construction of the SQL string to also include the construction of result fetching structures that link the SQL construct to the result set, and in the ORM it includes the accommodation of ORM-enabled attribute loaders, relationship eager loaders and other options, and object construction routines that must be built up each time an ORM query seeks to run and construct ORM objects from result sets.

To introduce the general idea of the feature, given code from the Performance suite as follows, which will invoke a very simple query “n” times, for a default value of n=10000. The query returns only a single row, as the overhead we are looking to decrease is that of many small queries. The optimization is not as significant for queries that return many rows:

session = Session(bind=engine)
for id_ in random.sample(ids, n):
    result = session.query(Customer).filter(Customer.id == id_).one()

This example in the 1.3 release of SQLAlchemy on a Dell XPS13 running Linux completes as follows:

test_orm_query : (10000 iterations); total time 3.440652 sec

In 1.4, the code above without modification completes:

test_orm_query : (10000 iterations); total time 2.367934 sec

This first test indicates that regular ORM queries when using caching can run over many iterations in the range of 30% faster.

A second variant of the feature is the optional use of Python lambdas to defer the construction of the query itself. This is a more sophisticated variant of the approach used by the “Baked Query” extension, which was introduced in version 1.0.0. The “lambda” feature may be used in a style very similar to that of baked queries, except that it is available in an ad-hoc way for any SQL construct. It additionally includes the ability to scan each invocation of the lambda for bound literal values that change on every invocation, as well as changes to other constructs, such as querying from a different entity or column each time, while still not having to run the actual code each time.

Using this API looks as follows:

session = Session(bind=engine)
for id_ in random.sample(ids, n):
    stmt = lambda_stmt(lambda: future_select(Customer))
    stmt += lambda s: s.where(Customer.id == id_)
    session.execute(stmt).scalar_one()

The code above completes:

test_orm_query_newstyle_w_lambdas : (10000 iterations); total time 1.247092 sec

This test indicates that using the newer “select()” style of ORM querying, in conjunction with a full “baked” style invocation that caches the entire construction, can run over many iterations in the range of 60% faster and grants performance about the same as the baked query system which is now superseded by the native caching system.

The new system makes use of the existing Connection.execution_options.compiled_cache execution option and also adds a cache to the Engine directly, which is configured using the Engine.query_cache_size parameter.

A significant portion of API and behavioral changes throughout 1.4 were driven in order to support this new feature.

#4639 #5380 #4645 #4808 #5004

Declarative is now integrated into the ORM with new features

After ten years or so of popularity, the sqlalchemy.ext.declarative package is now integrated into the sqlalchemy.orm namespace, with the exception of the declarative “extension” classes which remain as Declarative extensions.

The new classes added to sqlalchemy.orm include:

  • registry - a new class that supersedes the role of the “declarative base” class, serving as a registry of mapped classes which can be referenced via string name within relationship() calls and is agnostic of the style in which any particular class was mapped.

  • declarative_base() - this is the same declarative base class that has been in use throughout the span of the declarative system, except it now references a registry object internally and is implemented by the registry.generate_base() method which can be invoked from a registry directly. The declarative_base() function creates this registry automatically so there is no impact on existing code. The sqlalchemy.ext.declarative.declarative_base name is still present, emitting a 2.0 deprecation warning when 2.0 deprecations mode is enabled.

  • declared_attr() - the same “declared attr” function call now part of sqlalchemy.orm. The sqlalchemy.ext.declarative.declared_attr name is still present, emitting a 2.0 deprecation warning when 2.0 deprecations mode is enabled.

  • Other names moved into sqlalchemy.orm include has_inherited_table(), synonym_for(), DeclarativeMeta, as_declarative().

In addition, The instrument_declarative() function is deprecated, superseded by registry.map_declaratively(). The ConcreteBase, AbstractConcreteBase, and DeferredReflection classes remain as extensions in the Declarative Extensions package.

Mapping styles have now been organized such that they all extend from the registry object, and fall into these categories:

The existing classical mapping function mapper() remains, however it is deprecated to call upon mapper() directly; the new registry.map_imperatively() method now routes the request through the sqlalchemy.orm.registry() so that it integrates with other declarative mappings unambiguously.

The new approach interoperates with 3rd party class instrumentation systems which necessarily must take place on the class before the mapping process does, allowing declarative mapping to work via a decorator instead of a declarative base so that packages like dataclasses and attrs can be used with declarative mappings, in addition to working with classical mappings.

Declarative documentation has now been fully integrated into the ORM mapper configuration documentation and includes examples for all styles of mappings organized into one place. See the section ORM Mapped Class Overview for the start of the newly reorganized documentation.

#5508

Python Dataclasses, attrs Supported w/ Declarative, Imperative Mappings

Along with the new declarative decorator styles introduced in Declarative is now integrated into the ORM with new features, the Mapper is now explicitly aware of the Python dataclasses module and will recognize attributes that are configured in this way, and proceed to map them without skipping them as was the case previously. In the case of the attrs module, attrs already removes its own attributes from the class so was already compatible with SQLAlchemy classical mappings. With the addition of the registry.mapped() decorator, both attribute systems can now interoperate with Declarative mappings as well.

#5027

Asynchronous IO Support for Core and ORM

SQLAlchemy now supports Python asyncio-compatible database drivers using an all-new asyncio front-end interface to Connection for Core usage as well as Session for ORM use, using the AsyncConnection and AsyncSession objects.

Note

The new asyncio feature should be considered alpha level for the initial releases of SQLAlchemy 1.4. This is super new stuff that uses some previously unfamiliar programming techniques.

The initial database API supported is the asyncpg asyncio driver for PostgreSQL.

The internal features of SQLAlchemy are fully integrated by making use of the greenlet library in order to adapt the flow of execution within SQLAlchemy’s internals to propagate asyncio await keywords outwards from the database driver to the end-user API, which features async methods. Using this approach, the asyncpg driver is fully operational within SQLAlchemy’s own test suite and features compatibility with most psycopg2 features. The approach was vetted and improved upon by developers of the greenlet project for which SQLAlchemy is appreciative.

The user facing async API itself is focused around IO-oriented methods such as AsyncEngine.connect() and AsyncConnection.execute(). The new Core constructs strictly support 2.0 style usage only; which means all statements must be invoked given a connection object, in this case AsyncConnection.

Within the ORM, 2.0 style query execution is supported, using select() constructs in conjunction with AsyncSession.execute(); the legacy Query object itself is not supported by the AsyncSession class.

ORM features such as lazy loading of related attributes as well as unexpiry of expired attributes are by definition disallowed in the traditional asyncio programming model, as they indicate IO operations that would run implicitly within the scope of a Python getattr() operation. To overcome this, the traditional asyncio application should make judicious use of eager loading techniques as well as forego the use of features such as expire on commit so that such loads are not needed.

For the asyncio application developer who chooses to break with tradition, the new API provides a strictly optional feature such that applications that wish to make use of such ORM features can opt to organize database-related code into functions which can then be run within greenlets using the AsyncSession.run_sync() method. See the greenlet_orm.py example at Asyncio Integration for a demonstration.

Support for asynchronous cursors is also provided using new methods AsyncConnection.stream() and AsyncSession.stream(), which support a new AsyncResult object that itself provides awaitable versions of common methods like AsyncResult.all() and AsyncResult.fetchmany(). Both Core and ORM are integrated with the feature which corresponds to the use of “server side cursors” in traditional SQLAlchemy.

#3414

Many Core and ORM statement objects now perform much of their construction and validation in the compile phase

A major initiative in the 1.4 series is to approach the model of both Core SQL statements as well as the ORM Query to allow for an efficient, cacheable model of statement creation and compilation, where the compilation step would be cached, based on a cache key generated by the created statement object, which itself is newly created for each use. Towards this goal, much of the Python computation which occurs within the construction of statements, particularly that of the ORM Query as well as the select() construct when used to invoke ORM queries, is being moved to occur within the compilation phase of the statement which only occurs after the statement has been invoked, and only if the statement’s compiled form was not yet cached.

From an end-user perspective, this means that some of the error messages which can arise based on arguments passed to the object will no longer be raised immediately, and instead will occur only when the statement is invoked for the first time. These conditions are always structural and not data driven, so there is no risk of such a condition being missed due to a cached statement.

Error conditions which fall under this category include:

  • when a _selectable.CompoundSelect is constructed (e.g. a UNION, EXCEPT, etc.) and the SELECT statements passed do not have the same number of columns, a CompileError is now raised to this effect; previously, an ArgumentError would be raised immediately upon statement construction.

  • Various error conditions which may arise when calling upon Query.join() will be evaluated at statement compilation time rather than when the method is first called.

Other things that may change involve the Query object directly:

  • Behaviors may be slightly different when calling upon the Query.statement accessor. The Select object returned is now a direct copy of the same state that was present in the Query, without any ORM-specific compilation being performed (which means it’s dramatically faster). However, the Select will not have the same internal state as it had in 1.3, including things like the FROM clauses being explicitly spelled out if they were not explicitly stated in the Query. This means code that relies upon manipulating this Select statement such as calling methods like Select.with_only_columns() may need to accommodate for the FROM clause.

Repaired internal importing conventions such that code linters may work correctly

SQLAlchemy has for a long time used a parameter-injecting decorator to help resolve mutually-dependent module imports, like this:

@util.dependency_for("sqlalchemy.sql.dml")
def insert(self, dml, *args, **kw):

Where the above function would be rewritten to no longer have the dml parameter on the outside. This would confuse code-linting tools into seeing a missing parameter to functions. A new approach has been implemented internally such that the function’s signature is no longer modified and the module object is procured inside the function instead.

#4656

#4689

Support for SQL Regular Expression operators

A long awaited feature to add rudimentary support for database regular expression operators, to complement the ColumnOperators.like() and ColumnOperators.match() suites of operations. The new features include ColumnOperators.regexp_match() implementing a regular expression match like function, and ColumnOperators.regexp_replace() implementing a regular expression string replace function.

Supported backends include SQLite, PostgreSQL, MySQL / MariaDB, and Oracle. The SQLite backend only supports “regexp_match” but not “regexp_replace”.

The regular expression syntaxes and flags are not backend agnostic. A future feature will allow multiple regular expression syntaxes to be specified at once to switch between different backends on the fly.

For SQLite, Python’s re.search() function with no additional arguments is established as the implementation.

See also

ColumnOperators.regexp_match()

ColumnOperators.regexp_replace()

pysqlite_regexp - SQLite implementation notes

#1390

SQLAlchemy 2.0 Deprecations Mode

One of the primary goals of the 1.4 release is to provide a “transitional” release so that applications may migrate to SQLAlchemy 2.0 gradually. Towards this end, a primary feature in release 1.4 is “2.0 deprecations mode”, which is a series of deprecation warnings that emit against every detectable API pattern which will work differently in version 2.0. The warnings all make use of the RemovedIn20Warning class. As these warnings affect foundational patterns including the select() and Engine constructs, even simple applications can generate a lot of warnings until appropriate API changes are made. The warning mode is therefore turned off by default until the developer enables the environment variable SQLALCHEMY_WARN_20=1.

For a full walkthrough of using 2.0 Deprecations mode, see Migration to 2.0 Step Two - Turn on RemovedIn20Warnings.

API and Behavioral Changes - Core

A SELECT statement is no longer implicitly considered to be a FROM clause

This change is one of the larger conceptual changes in SQLAlchemy in many years, however it is hoped that the end user impact is relatively small, as the change more closely matches what databases like MySQL and PostgreSQL require in any case.

The most immediate noticeable impact is that a select() can no longer be embedded inside of another select() directly, without explicitly turning the inner select() into a subquery first. This is historically performed by using the SelectBase.alias() method, which remains, however is more explicitly suited by using a new method SelectBase.subquery(); both methods do the same thing. The object returned is now Subquery, which is very similar to the Alias object and shares a common base AliasedReturnsRows.

That is, this will now raise:

stmt1 = select(user.c.id, user.c.name)
stmt2 = select(addresses, stmt1).select_from(addresses.join(stmt1))

Raising:

sqlalchemy.exc.ArgumentError: Column expression or FROM clause expected,
got <...Select object ...>. To create a FROM clause from a <class
'sqlalchemy.sql.selectable.Select'> object, use the .subquery() method.

The correct calling form is instead (noting also that brackets are no longer required for select()):

sq1 = select(user.c.id, user.c.name).subquery()
stmt2 = select(addresses, sq1).select_from(addresses.join(sq1))

Noting above that the SelectBase.subquery() method is essentially equivalent to using the SelectBase.alias() method.

The rationale for this change is based on the following:

  • In order to support the unification of Select with Query, the Select object needs to have Select.join() and Select.outerjoin() methods that actually add JOIN criteria to the existing FROM clause, as is what users have always expected it to do in any case. The previous behavior, having to align with what a FromClause would do, was that it would generate an unnamed subquery and then JOIN to it, which was a completely useless feature that only confused those users unfortunate enough to try this. This change is discussed at select().join() and outerjoin() add JOIN criteria to the current query, rather than creating a subquery.

  • The behavior of including a SELECT in the FROM clause of another SELECT without first creating an alias or subquery would be that it creates an unnamed subquery. While standard SQL does support this syntax, in practice it is rejected by most databases. For example, both the MySQL and PostgreSQL outright reject the usage of unnamed subqueries:

    # MySQL / MariaDB:
    
    MariaDB [(none)]> select * from (select 1);
    ERROR 1248 (42000): Every derived table must have its own alias
    
    
    # PostgreSQL:
    
    test=> select * from (select 1);
    ERROR:  subquery in FROM must have an alias
    LINE 1: select * from (select 1);
                          ^
    HINT:  For example, FROM (SELECT ...) [AS] foo.

    A database like SQLite accepts them, however it is still often the case that the names produced from such a subquery are too ambiguous to be useful:

    sqlite> CREATE TABLE a(id integer);
    sqlite> CREATE TABLE b(id integer);
    sqlite> SELECT * FROM a JOIN (SELECT * FROM b) ON a.id=id;
    Error: ambiguous column name: id
    sqlite> SELECT * FROM a JOIN (SELECT * FROM b) ON a.id=b.id;
    Error: no such column: b.id
    
    # use a name
    sqlite> SELECT * FROM a JOIN (SELECT * FROM b) AS anon_1 ON a.id=anon_1.id;

As SelectBase objects are no longer FromClause objects, attributes like the .c attribute as well as methods like .select() is now deprecated, as they imply implicit production of a subquery. The .join() and .outerjoin() methods are now repurposed to append JOIN criteria to the existing query in a similar way as that of Query.join(), which is what users have always expected these methods to do in any case.

In place of the .c attribute, a new attribute SelectBase.selected_columns is added. This attribute resolves to a column collection that is what most people hope that .c does (but does not), which is to reference the columns that are in the columns clause of the SELECT statement. A common beginner mistake is code such as the following:

stmt = select(users)
stmt = stmt.where(stmt.c.name == "foo")

The above code appears intuitive and that it would generate “SELECT * FROM users WHERE name=’foo’”, however veteran SQLAlchemy users will recognize that it in fact generates a useless subquery resembling “SELECT * FROM (SELECT * FROM users) WHERE name=’foo’”.

The new SelectBase.selected_columns attribute however does suit the use case above, as in a case like the above it links directly to the columns present in the users.c collection:

stmt = select(users)
stmt = stmt.where(stmt.selected_columns.name == "foo")

#4617

select().join() and outerjoin() add JOIN criteria to the current query, rather than creating a subquery

Towards the goal of unifying Query and Select, particularly for 2.0 style use of Select, it was critical that there be a working Select.join() method that behaves like the Query.join() method, adding additional entries to the FROM clause of the existing SELECT and then returning the new Select object for further modification, instead of wrapping the object inside of an unnamed subquery and returning a JOIN from that subquery, a behavior that has always been virtually useless and completely misleading to users.

To allow this to be the case, A SELECT statement is no longer implicitly considered to be a FROM clause was first implemented which splits off Select from having to be a FromClause; this removed the requirement that Select.join() would need to return a Join object rather than a new version of that Select object that includes a new JOIN in its FROM clause.

From that point on, as the Select.join() and Select.outerjoin() did have an existing behavior, the original plan was that these methods would be deprecated, and the new “useful” version of the methods would be available on an alternate, “future” Select object available as a separate import.

However, after some time working with this particular codebase, it was decided that having two different kinds of Select objects floating around, each with 95% the same behavior except for some subtle difference in how some of the methods behave was going to be more misleading and inconvenient than simply making a hard change in how these two methods behave, given that the existing behavior of Select.join() and Select.outerjoin() is essentially never used and only causes confusion.

So it was decided, given how very useless the current behavior is, and how extremely useful and important and useful the new behavior would be, to make a hard behavioral change in this one area, rather than waiting another year and having a more awkward API in the interim. SQLAlchemy developers do not take it lightly to make a completely breaking change like this, however this is a very special case and it is extremely unlikely that the previous implementation of these methods was being used; as noted in A SELECT statement is no longer implicitly considered to be a FROM clause, major databases such as MySQL and PostgreSQL don’t allow for unnamed subqueries in any case and from a syntactical point of view it’s nearly impossible for a JOIN from an unnamed subquery to be useful since it’s very difficult to refer to the columns within it unambiguously.

With the new implementation, Select.join() and Select.outerjoin() now behave very similarly to that of Query.join(), adding JOIN criteria to the existing statement by matching to the left entity:

stmt = select(user_table).join(
    addresses_table, user_table.c.id == addresses_table.c.user_id
)

producing:

SELECT user.id, user.name FROM user JOIN address ON user.id=address.user_id

As is the case for Join, the ON clause is automatically determined if feasible:

stmt = select(user_table).join(addresses_table)

When ORM entities are used in the statement, this is essentially how ORM queries are built up using 2.0 style invocation. ORM entities will assign a “plugin” to the statement internally such that ORM-related compilation rules will take place when the statement is compiled into a SQL string. More directly, the Select.join() method can accommodate ORM relationships, without breaking the hard separation between Core and ORM internals:

stmt = select(User).join(User.addresses)

Another new method Select.join_from() is also added, which allows easier specification of the left and right side of a join at once:

stmt = select(Address.email_address, User.name).join_from(User, Address)

producing:

SELECT address.email_address, user.name FROM user JOIN address ON user.id == address.user_id

The URL object is now immutable

The URL object has been formalized such that it now presents itself as a namedtuple with a fixed number of fields that are immutable. In addition, the dictionary represented by the URL.query attribute is also an immutable mapping. Mutation of the URL object was not a formally supported or documented use case which led to some open-ended use cases that made it very difficult to intercept incorrect usages, most commonly mutation of the URL.query dictionary to include non-string elements. It also led to all the common problems of allowing mutability in a fundamental data object, namely unwanted mutations elsewhere leaking into code that didn’t expect the URL to change. Finally, the namedtuple design is inspired by that of Python’s urllib.parse.urlparse() which returns the parsed object as a named tuple.

The decision to change the API outright is based on a calculus weighing the infeasibility of a deprecation path (which would involve changing the URL.query dictionary to be a special dictionary that emits deprecation warnings when any kind of standard library mutation methods are invoked, in addition that when the dictionary would hold any kind of list of elements, the list would also have to emit deprecation warnings on mutation) against the unlikely use case of projects already mutating URL objects in the first place, as well as that small changes such as that of #5341 were creating backwards-incompatibility in any case. The primary case for mutation of a URL object is that of parsing plugin arguments within the CreateEnginePlugin extension point, itself a fairly recent addition that based on Github code search is in use by two repositories, neither of which are actually mutating the URL object.

The URL object now provides a rich interface inspecting and generating new URL objects. The existing mechanism to create a URL object, the make_url() function, remains unchanged:

>>> from sqlalchemy.engine import make_url
>>> url = make_url("postgresql+psycopg2://user:pass@host/dbname")

For programmatic construction, code that may have been using the URL constructor or __init__ method directly will receive a deprecation warning if arguments are passed as keyword arguments and not an exact 7-tuple. The keyword-style constructor is now available via the URL.create() method:

>>> from sqlalchemy.engine import URL
>>> url = URL.create("postgresql", "user", "pass", host="host", database="dbname")
>>> str(url)
'postgresql://user:pass@host/dbname'

Fields can be altered typically using the URL.set() method, which returns a new URL object with changes applied:

>>> mysql_url = url.set(drivername="mysql+pymysql")
>>> str(mysql_url)
'mysql+pymysql://user:pass@host/dbname'

To alter the contents of the URL.query dictionary, methods such as URL.update_query_dict() may be used:

>>> url.update_query_dict({"sslcert": "/path/to/crt"})
postgresql://user:***@host/dbname?sslcert=%2Fpath%2Fto%2Fcrt

To upgrade code that is mutating these fields directly, a backwards and forwards compatible approach is to use a duck-typing, as in the following style:

def set_url_drivername(some_url, some_drivername):
    # check for 1.4
    if hasattr(some_url, "set"):
        return some_url.set(drivername=some_drivername)
    else:
        # SQLAlchemy 1.3 or earlier, mutate in place
        some_url.drivername = some_drivername
        return some_url


def set_ssl_cert(some_url, ssl_cert):
    # check for 1.4
    if hasattr(some_url, "update_query_dict"):
        return some_url.update_query_dict({"sslcert": ssl_cert})
    else:
        # SQLAlchemy 1.3 or earlier, mutate in place
        some_url.query["sslcert"] = ssl_cert
        return some_url

The query string retains its existing format as a dictionary of strings to strings, using sequences of strings to represent multiple parameters. For example:

>>> from sqlalchemy.engine import make_url
>>> url = make_url(
...     "postgresql://user:pass@host/dbname?alt_host=host1&alt_host=host2&sslcert=%2Fpath%2Fto%2Fcrt"
... )
>>> url.query
immutabledict({'alt_host': ('host1', 'host2'), 'sslcert': '/path/to/crt'})

To work with the contents of the URL.query attribute such that all values are normalized into sequences, use the URL.normalized_query attribute:

>>> url.normalized_query
immutabledict({'alt_host': ('host1', 'host2'), 'sslcert': ('/path/to/crt',)})

The query string can be appended to via methods such as URL.update_query_dict(), URL.update_query_pairs(), URL.update_query_string():

>>> url.update_query_dict({"alt_host": "host3"}, append=True)
postgresql://user:***@host/dbname?alt_host=host1&alt_host=host2&alt_host=host3&sslcert=%2Fpath%2Fto%2Fcrt

See also

URL

Changes to CreateEnginePlugin

The CreateEnginePlugin is also impacted by this change, as the documentation for custom plugins indicated that the dict.pop() method should be used to remove consumed arguments from the URL object. This should now be achieved using the CreateEnginePlugin.update_url() method. A backwards compatible approach would look like:

from sqlalchemy.engine import CreateEnginePlugin


class MyPlugin(CreateEnginePlugin):
    def __init__(self, url, kwargs):
        # check for 1.4 style
        if hasattr(CreateEnginePlugin, "update_url"):
            self.my_argument_one = url.query["my_argument_one"]
            self.my_argument_two = url.query["my_argument_two"]
        else:
            # legacy
            self.my_argument_one = url.query.pop("my_argument_one")
            self.my_argument_two = url.query.pop("my_argument_two")

        self.my_argument_three = kwargs.pop("my_argument_three", None)

    def update_url(self, url):
        # this method runs in 1.4 only and should be used to consume
        # plugin-specific arguments
        return url.difference_update_query(["my_argument_one", "my_argument_two"])

See the docstring at CreateEnginePlugin for complete details on how this class is used.

#5526

select(), case() now accept positional expressions

As it may be seen elsewhere in this document, the select() construct will now accept “columns clause” arguments positionally, rather than requiring they be passed as a list:

# new way, supports 2.0
stmt = select(table.c.col1, table.c.col2, ...)

When sending the arguments positionally, no other keyword arguments are permitted. In SQLAlchemy 2.0, the above calling style will be the only calling style supported.

For the duration of 1.4, the previous calling style will still continue to function, which passes the list of columns or other expressions as a list:

# old way, still works in 1.4
stmt = select([table.c.col1, table.c.col2, ...])

The above legacy calling style also accepts the old keyword arguments that have since been removed from most narrative documentation. The existence of these keyword arguments is why the columns clause was passed as a list in the first place:

# very much the old way, but still works in 1.4
stmt = select([table.c.col1, table.c.col2, ...], whereclause=table.c.col1 == 5)

The detection between the two styles is based on whether or not the first positional argument is a list. There are unfortunately still likely some usages that look like the following, where the keyword for the “whereclause” is omitted:

# very much the old way, but still works in 1.4
stmt = select([table.c.col1, table.c.col2, ...], table.c.col1 == 5)

As part of this change, the Select construct also gains the 2.0-style “future” API which includes an updated Select.join() method as well as methods like Select.filter_by() and Select.join_from().

In a related change, the case() construct has also been modified to accept its list of WHEN clauses positionally, with a similar deprecation track for the old calling style:

stmt = select(users_table).where(
    case(
        (users_table.c.name == "wendy", "W"),
        (users_table.c.name == "jack", "J"),
        else_="E",
    )
)

The convention for SQLAlchemy constructs accepting *args vs. a list of values, as is the latter case for a construct like ColumnOperators.in_(), is that positional arguments are used for structural specification, lists are used for data specification.

#5284

All IN expressions render parameters for each value in the list on the fly (e.g. expanding parameters)

The “expanding IN” feature, first introduced in Late-expanded IN parameter sets allow IN expressions with cached statements, has matured enough such that it is clearly superior to the previous method of rendering IN expressions. As the approach was improved to handle empty lists of values, it is now the only means that Core / ORM will use to render lists of IN parameters.

The previous approach which has been present in SQLAlchemy since its first release was that when a list of values were passed to the ColumnOperators.in_() method, the list would be expanded into a series of individual BindParameter objects at statement construction time. This suffered from the limitation that it was not possible to vary the parameter list at statement execution time based on the parameter dictionary, which meant that string SQL statements could not be cached independently of their parameters, nor could the parameter dictionary be fully used for statements that included IN expressions generally.

In order to service the “baked query” feature described at Baked Queries, a cacheable version of IN was needed, which is what brought about the “expanding IN” feature. In contrast to the existing behavior whereby the parameter list is expanded at statement construction time into individual BindParameter objects, the feature instead uses a single BindParameter that stores the list of values at once; when the statement is executed by the Engine, it is “expanded” on the fly into individual bound parameter positions based on the parameters passed to the call to Connection.execute(), and the existing SQL string which may have been retrieved from a previous execution is modified using a regular expression to suit the current parameter set. This allows for the same Compiled object, which stores the rendered string statement, to be invoked multiple times against different parameter sets that modify the list contents passed to IN expressions, while still maintaining the behavior of individual scalar parameters being passed to the DBAPI. While some DBAPIs do support this functionality directly, it is not generally available; the “expanding IN” feature now supports the behavior consistently for all backends.

As a major focus of 1.4 is to allow for true statement caching in Core and ORM without the awkwardness of the “baked” system, and since the “expanding IN” feature represents a simpler approach to building expressions in any case, it’s now invoked automatically whenever a list of values is passed to an IN expression:

stmt = select(A.id, A.data).where(A.id.in_([1, 2, 3]))

The pre-execution string representation is:

>>> print(stmt)
SELECT a.id, a.data
FROM a
WHERE a.id IN ([POSTCOMPILE_id_1])

To render the values directly, use literal_binds as was the case previously:

>>> print(stmt.compile(compile_kwargs={"literal_binds": True}))
SELECT a.id, a.data
FROM a
WHERE a.id IN (1, 2, 3)

A new flag, “render_postcompile”, is added as a helper to allow the current bound value to be rendered as it would be passed to the database:

>>> print(stmt.compile(compile_kwargs={"render_postcompile": True}))
SELECT a.id, a.data
FROM a
WHERE a.id IN (:id_1_1, :id_1_2, :id_1_3)

Engine logging output shows the ultimate rendered statement as well:

INFO sqlalchemy.engine.base.Engine SELECT a.id, a.data
FROM a
WHERE a.id IN (?, ?, ?)
INFO sqlalchemy.engine.base.Engine (1, 2, 3)

As part of this change, the behavior of “empty IN” expressions, where the list parameter is empty, is now standardized on use of the IN operator against a so-called “empty set”. As there is no standard SQL syntax for empty sets, a SELECT that returns no rows is used, tailored in specific ways for each backend so that the database treats it as an empty set; this feature was first introduced in version 1.3 and is described at Expanding IN feature now supports empty lists. The create_engine.empty_in_strategy parameter, introduced in version 1.2 as a means for migrating for how this case was treated for the previous IN system, is now deprecated and this flag no longer has an effect; as described in The IN / NOT IN operator’s empty collection behavior is now configurable; default expression simplified, this flag allowed a dialect to switch between the original system of comparing a column against itself, which turned out to be a huge performance issue, and a newer system of comparing “1 != 1” in order to produce a “false” expression. The 1.3 introduced behavior which now takes place in all cases is more correct than both approaches as the IN operator is still used, and does not have the performance issue of the original system.

In addition, the “expanding” parameter system has been generalized so that it also services other dialect-specific use cases where a parameter cannot be accommodated by the DBAPI or backing database; see New “post compile” bound parameters used for LIMIT/OFFSET in Oracle, SQL Server for details.

#4645

Built-in FROM linting will warn for any potential cartesian products in a SELECT statement

As the Core expression language as well as the ORM are built on an “implicit FROMs” model where a particular FROM clause is automatically added if any part of the query refers to it, a common issue is the case where a SELECT statement, either a top level statement or an embedded subquery, contains FROM elements that are not joined to the rest of the FROM elements in the query, causing what’s referred to as a “cartesian product” in the result set, i.e. every possible combination of rows from each FROM element not otherwise joined. In relational databases, this is nearly always an undesirable outcome as it produces an enormous result set full of duplicated, uncorrelated data.

SQLAlchemy, for all of its great features, is particularly prone to this sort of issue happening as a SELECT statement will have elements added to its FROM clause automatically from any table seen in the other clauses. A typical scenario looks like the following, where two tables are JOINed together, however an additional entry in the WHERE clause that perhaps inadvertently does not line up with these two tables will create an additional FROM entry:

address_alias = aliased(Address)

q = (
    session.query(User)
    .join(address_alias, User.addresses)
    .filter(Address.email_address == "foo")
)

The above query selects from a JOIN of User and address_alias, the latter of which is an alias of the Address entity. However, the Address entity is used within the WHERE clause directly, so the above would result in the SQL:

SELECT
    users.id AS users_id, users.name AS users_name,
    users.fullname AS users_fullname,
    users.nickname AS users_nickname
FROM addresses, users JOIN addresses AS addresses_1 ON users.id = addresses_1.user_id
WHERE addresses.email_address = :email_address_1

In the above SQL, we can see what SQLAlchemy developers term “the dreaded comma”, as we see “FROM addresses, users JOIN addresses” in the FROM clause which is the classic sign of a cartesian product; where a query is making use of JOIN in order to join FROM clauses together, however because one of them is not joined, it uses a comma. The above query will return a full set of rows that join the “user” and “addresses” table together on the “id / user_id” column, and will then apply all those rows into a cartesian product against every row in the “addresses” table directly. That is, if there are ten user rows and 100 rows in addresses, the above query will return its expected result rows, likely to be 100 as all address rows would be selected, multiplied by 100 again, so that the total result size would be 10000 rows.

The “table1, table2 JOIN table3” pattern is one that also occurs quite frequently within the SQLAlchemy ORM due to either subtle mis-application of ORM features particularly those related to joined eager loading or joined table inheritance, as well as a result of SQLAlchemy ORM bugs within those same systems. Similar issues apply to SELECT statements that use “implicit joins”, where the JOIN keyword is not used and instead each FROM element is linked with another one via the WHERE clause.

For some years there has been a recipe on the Wiki that applies a graph algorithm to a select() construct at query execution time and inspects the structure of the query for these un-linked FROM clauses, parsing through the WHERE clause and all JOIN clauses to determine how FROM elements are linked together and ensuring that all the FROM elements are connected in a single graph. This recipe has now been adapted to be part of the SQLCompiler itself where it now optionally emits a warning for a statement if this condition is detected. The warning is enabled using the create_engine.enable_from_linting flag and is enabled by default. The computational overhead of the linter is very low, and additionally it only occurs during statement compilation which means for a cached SQL statement it only occurs once.

Using this feature, our ORM query above will emit a warning:

>>> q.all()
SAWarning: SELECT statement has a cartesian product between FROM
element(s) "addresses_1", "users" and FROM element "addresses".
Apply join condition(s) between each element to resolve.

The linter feature accommodates not just for tables linked together through the JOIN clauses but also through the WHERE clause Above, we can add a WHERE clause to link the new Address entity with the previous address_alias entity and that will remove the warning:

q = (
    session.query(User)
    .join(address_alias, User.addresses)
    .filter(Address.email_address == "foo")
    .filter(Address.id == address_alias.id)
)  # resolve cartesian products,
# will no longer warn

The cartesian product warning considers any kind of link between two FROM clauses to be a resolution, even if the end result set is still wasteful, as the linter is intended only to detect the common case of a FROM clause that is completely unexpected. If the FROM clause is referred to explicitly elsewhere and linked to the other FROMs, no warning is emitted:

q = (
    session.query(User)
    .join(address_alias, User.addresses)
    .filter(Address.email_address == "foo")
    .filter(Address.id > address_alias.id)
)  # will generate a lot of rows,
# but no warning

Full cartesian products are also allowed if they are explicitly stated; if we wanted for example the cartesian product of User and Address, we can JOIN on true() so that every row will match with every other; the following query will return all rows and produce no warnings:

from sqlalchemy import true

# intentional cartesian product
q = session.query(User).join(Address, true())  # intentional cartesian product

The warning is only generated by default when the statement is compiled by the Connection for execution; calling the ClauseElement.compile() method will not emit a warning unless the linting flag is supplied:

>>> from sqlalchemy.sql import FROM_LINTING
>>> print(q.statement.compile(linting=FROM_LINTING))
SAWarning: SELECT statement has a cartesian product between FROM element(s) "addresses" and FROM element "users".  Apply join condition(s) between each element to resolve.
SELECT users.id, users.name, users.fullname, users.nickname
FROM addresses, users JOIN addresses AS addresses_1 ON users.id = addresses_1.user_id
WHERE addresses.email_address = :email_address_1

#4737

New Result object

A major goal of SQLAlchemy 2.0 is to unify how “results” are handled between the ORM and Core. Towards this goal, version 1.4 introduces new versions of both the ResultProxy and RowProxy objects that have been part of SQLAlchemy since the beginning.

The new objects are documented at Result and Row, and are used not only for Core result sets but for 2.0 style results within the ORM as well.

This result object is fully compatible with ResultProxy and includes many new features, that are now applied to both Core and ORM results equally, including methods such as:

Result.one() - returns exactly a single row, or raises:

with engine.connect() as conn:
    row = conn.execute(table.select().where(table.c.id == 5)).one()

Result.one_or_none() - same, but also returns None for no rows

Result.all() - returns all rows

Result.partitions() - fetches rows in chunks:

with engine.connect() as conn:
    result = conn.execute(
        table.select().order_by(table.c.id),
        execution_options={"stream_results": True}
    )
    for chunk in result.partitions(500):
        # process up to 500 records

Result.columns() - allows slicing and reorganizing of rows:

with engine.connect() as conn:
    # requests x, y, z
    result = conn.execute(select(table.c.x, table.c.y, table.c.z))

    # iterate rows as y, x
    for y, x in result.columns("y", "x"):
        print("Y: %s  X: %s" % (y, x))

Result.scalars() - returns lists of scalar objects, from the first column by default but can also be selected:

result = session.execute(select(User).order_by(User.id))
for user_obj in result.scalars():
    # ...

Result.mappings() - instead of named-tuple rows, returns dictionaries:

with engine.connect() as conn:
    result = conn.execute(select(table.c.x, table.c.y, table.c.z))

    for map_ in result.mappings():
        print("Y: %(y)s  X: %(x)s" % map_)

When using Core, the object returned by Connection.execute() is an instance of CursorResult, which continues to feature the same API features as ResultProxy regarding inserted primary keys, defaults, rowcounts, etc. For ORM, a Result subclass will be returned that performs translation of Core rows into ORM rows, and then allows all the same operations to take place.

See also

ORM Query Unified with Core Select - in the 2.0 migration documentation

#5087

#4395

#4959

RowProxy is no longer a “proxy”; is now called Row and behaves like an enhanced named tuple

The RowProxy class, which represents individual database result rows in a Core result set, is now called Row and is no longer a “proxy” object; what this means is that when the Row object is returned, the row is a simple tuple that contains the data in its final form, already having been processed by result-row handling functions associated with datatypes (examples include turning a date string from the database into a datetime object, a JSON string into a Python json.loads() result, etc.).

The immediate rationale for this is so that the row can act more like a Python named tuple, rather than a mapping, where the values in the tuple are the subject of the __contains__ operator on the tuple, rather than the keys. With Row acting like a named tuple, it is then suitable for use as as replacement for the ORM’s KeyedTuple object, leading to an eventual API where both the ORM and Core deliver result sets that behave identically. Unification of major patterns within ORM and Core is a major goal of SQLAlchemy 2.0, and release 1.4 aims to have most or all of the underlying architectural patterns in place in order to support this process. The note in The “KeyedTuple” object returned by Query is replaced by Row describes the ORM’s use of the Row class.

For release 1.4, the Row class provides an additional subclass LegacyRow, which is used by Core and provides a backwards-compatible version of RowProxy while emitting deprecation warnings for those API features and behaviors that will be moved. ORM Query now makes use of Row directly as a replacement for KeyedTuple.

The LegacyRow class is a transitional class where the __contains__ method is still testing against the keys, not the values, while emitting a deprecation warning when the operation succeeds. Additionally, all the other mapping-like methods on the previous RowProxy are deprecated, including LegacyRow.keys(), LegacyRow.items(), etc. For mapping-like behaviors from a Row object, including support for these methods as well as a key-oriented __contains__ operator, the API going forward will be to first access a special attribute Row._mapping, which will then provide a complete mapping interface to the row, rather than a tuple interface.

Rationale: To behave more like a named tuple rather than a mapping

The difference between a named tuple and a mapping as far as boolean operators can be summarized. Given a “named tuple” in pseudo code as:

row = (id: 5,  name: 'some name')

The biggest cross-incompatible difference is the behavior of __contains__:

"id" in row  # True for a mapping, False for a named tuple
"some name" in row  # False for a mapping, True for a named tuple

In 1.4, when a LegacyRow is returned by a Core result set, the above "id" in row comparison will continue to succeed, however a deprecation warning will be emitted. To use the “in” operator as a mapping, use the Row._mapping attribute:

"id" in row._mapping

SQLAlchemy 2.0’s result object will feature a .mappings() modifier so that these mappings can be received directly:

# using sqlalchemy.future package
for row in result.mappings():
    row["id"]

Proxying behavior goes away, was also unnecessary in modern usage

The refactor of Row to behave like a tuple requires that all data values be fully available up front. This is an internal behavior change from that of RowProxy, where result-row processing functions would be invoked at the point of accessing an element of the row, instead of when the row was first fetched. This means for example when retrieving a datetime value from SQLite, the data for the row as present in the RowProxy object would previously have looked like:

row_proxy = (1, "2019-12-31 19:56:58.272106")

and then upon access via __getitem__, the datetime.strptime() function would be used on the fly to convert the above string date into a datetime object. With the new architecture, the datetime() object is present in the tuple when it is returned, the datetime.strptime() function having been called just once up front:

row = (1, datetime.datetime(2019, 12, 31, 19, 56, 58, 272106))

The RowProxy and Row objects in SQLAlchemy are where the majority of SQLAlchemy’s C extension code takes place. This code has been highly refactored to provide the new behavior in an efficient manner, and overall performance has been improved as the design of Row is now considerably simpler.

The rationale behind the previous behavior assumed a usage model where a result row might have dozens or hundreds of columns present, where most of those columns would not be accessed, and for which a majority of those columns would require some result-value processing function. By invoking the processing function only when needed, the goal was that lots of result processing functions would not be necessary, thus increasing performance.

There are many reasons why the above assumptions do not hold:

  1. the vast majority of row-processing functions called were to Unicode decode a bytestring into a Python Unicode string under Python 2. This was right as Python Unicode was beginning to see use and before Python 3 existed. Once Python 3 was introduced, within a few years, all Python DBAPIs took on the proper role of supporting the delivering of Python Unicode objects directly, under both Python 2 and Python 3, as an option in the former case and as the only way forward in the latter case. Eventually, in most cases it became the default for Python 2 as well. SQLAlchemy’s Python 2 support still enables explicit string-to-Unicode conversion for some DBAPIs such as cx_Oracle, however it is now performed at the DBAPI level rather than as a standard SQLAlchemy result row processing function.

  2. The above string conversion, when it is used, was made to be extremely performant via the C extensions, so much so that even in 1.4, SQLAlchemy’s byte-to-Unicode codec hook is plugged into cx_Oracle where it has been observed to be more performant than cx_Oracle’s own hook; this meant that the overhead for converting all strings in a row was not as significant as it originally was in any case.

  3. Row processing functions are not used in most other cases; the exceptions are SQLite’s datetime support, JSON support for some backends, some numeric handlers such as string to Decimal. In the case of Decimal, Python 3 also standardized on the highly performant cdecimal implementation, which is not the case in Python 2 which continues to use the much less performant pure Python version.

  4. Fetching full rows where only a few columns are needed is not common within real-world use cases In the early days of SQLAlchemy, database code from other languages of the form “row = fetch(‘SELECT * FROM table’)” was common; using SQLAlchemy’s expression language however, code observed in the wild typically makes use of the specific columns needed.

#4710

SELECT objects and derived FROM clauses allow for duplicate columns and column labels

This change allows that the select() construct now allows for duplicate column labels as well as duplicate column objects themselves, so that result tuples are organized and ordered in the identical way in that the columns were selected. The ORM Query already works this way, so this change allows for greater cross-compatibility between the two, which is a key goal of the 2.0 transition:

>>> from sqlalchemy import column, select
>>> c1, c2, c3, c4 = column("c1"), column("c2"), column("c3"), column("c4")
>>> stmt = select(c1, c2, c3.label("c2"), c2, c4)
>>> print(stmt)
SELECT c1, c2, c3 AS c2, c2, c4

To support this change, the ColumnCollection used by SelectBase as well as for derived FROM clauses such as subqueries also support duplicate columns; this includes the new SelectBase.selected_columns attribute, the deprecated SelectBase.c attribute, as well as the FromClause.c attribute seen on constructs such as Subquery and Alias:

>>> list(stmt.selected_columns)
[
    <sqlalchemy.sql.elements.ColumnClause at 0x7fa540bcca20; c1>,
    <sqlalchemy.sql.elements.ColumnClause at 0x7fa540bcc9e8; c2>,
    <sqlalchemy.sql.elements.Label object at 0x7fa540b3e2e8>,
    <sqlalchemy.sql.elements.ColumnClause at 0x7fa540bcc9e8; c2>,
    <sqlalchemy.sql.elements.ColumnClause at 0x7fa540897048; c4>
]

>>> print(stmt.subquery().select())
SELECT anon_1.c1, anon_1.c2, anon_1.c2, anon_1.c2, anon_1.c4
FROM (SELECT c1, c2, c3 AS c2, c2, c4) AS anon_1

ColumnCollection also allows access by integer index to support when the string “key” is ambiguous:

>>> stmt.selected_columns[2]
<sqlalchemy.sql.elements.Label object at 0x7fa540b3e2e8>

To suit the use of ColumnCollection in objects such as Table and PrimaryKeyConstraint, the old “deduplicating” behavior which is more critical for these objects is preserved in a new class DedupeColumnCollection.

The change includes that the familiar warning "Column %r on table %r being replaced by %r, which has the same key.  Consider use_labels for select() statements." is removed; the Select.apply_labels() is still available and is still used by the ORM for all SELECT operations, however it does not imply deduplication of column objects, although it does imply deduplication of implicitly generated labels:

>>> from sqlalchemy import table
>>> user = table("user", column("id"), column("name"))
>>> stmt = select(user.c.id, user.c.name, user.c.id).apply_labels()
>>> print(stmt)
SELECT "user".id AS user_id, "user".name AS user_name, "user".id AS id_1
FROM "user"

Finally, the change makes it easier to create UNION and other _selectable.CompoundSelect objects, by ensuring that the number and position of columns in a SELECT statement mirrors what was given, in a use case such as:

>>> s1 = select(user, user.c.id)
>>> s2 = select(c1, c2, c3)
>>> from sqlalchemy import union
>>> u = union(s1, s2)
>>> print(u)
SELECT "user".id, "user".name, "user".id
FROM "user" UNION SELECT c1, c2, c3

#4753

Improved column labeling for simple column expressions using CAST or similar

A user pointed out that the PostgreSQL database has a convenient behavior when using functions like CAST against a named column, in that the result column name is named the same as the inner expression:

test=> SELECT CAST(data AS VARCHAR) FROM foo;

data
------
 5
(1 row)

This allows one to apply CAST to table columns while not losing the column name (above using the name "data") in the result row. Compare to databases such as MySQL/MariaDB, as well as most others, where the column name is taken from the full SQL expression and is not very portable:

MariaDB [test]> SELECT CAST(data AS CHAR) FROM foo;
+--------------------+
| CAST(data AS CHAR) |
+--------------------+
| 5                  |
+--------------------+
1 row in set (0.003 sec)

In SQLAlchemy Core expressions, we never deal with a raw generated name like the above, as SQLAlchemy applies auto-labeling to expressions like these, which are up until now always a so-called “anonymous” expression:

>>> print(select(cast(foo.c.data, String)))
SELECT CAST(foo.data AS VARCHAR) AS anon_1     # old behavior
FROM foo

These anonymous expressions were necessary as SQLAlchemy’s ResultProxy made heavy use of result column names in order to match up datatypes, such as the String datatype which used to have result-row-processing behavior, to the correct column, so most importantly the names had to be both easy to determine in a database-agnostic manner as well as unique in all cases. In SQLAlchemy 1.0 as part of #918, this reliance on named columns in result rows (specifically the cursor.description element of the PEP-249 cursor) was scaled back to not be necessary for most Core SELECT constructs; in release 1.4, the system overall is becoming more comfortable with SELECT statements that have duplicate column or label names such as in SELECT objects and derived FROM clauses allow for duplicate columns and column labels. So we now emulate PostgreSQL’s reasonable behavior for simple modifications to a single column, most prominently with CAST:

>>> print(select(cast(foo.c.data, String)))
SELECT CAST(foo.data AS VARCHAR) AS data
FROM foo

For CAST against expressions that don’t have a name, the previous logic is used to generate the usual “anonymous” labels:

>>> print(select(cast("hi there," + foo.c.data, String)))
SELECT CAST(:data_1 + foo.data AS VARCHAR) AS anon_1
FROM foo

A cast() against a Label, despite having to omit the label expression as these don’t render inside of a CAST, will nonetheless make use of the given name:

>>> print(select(cast(("hi there," + foo.c.data).label("hello_data"), String)))
SELECT CAST(:data_1 + foo.data AS VARCHAR) AS hello_data
FROM foo

And of course as was always the case, Label can be applied to the expression on the outside to apply an “AS <name>” label directly:

>>> print(select(cast(("hi there," + foo.c.data), String).label("hello_data")))
SELECT CAST(:data_1 + foo.data AS VARCHAR) AS hello_data
FROM foo

#4449

New “post compile” bound parameters used for LIMIT/OFFSET in Oracle, SQL Server

A major goal of the 1.4 series is to establish that all Core SQL constructs are completely cacheable, meaning that a particular Compiled structure will produce an identical SQL string regardless of any SQL parameters used with it, which notably includes those used to specify the LIMIT and OFFSET values, typically used for pagination and “top N” style results.

While SQLAlchemy has used bound parameters for LIMIT/OFFSET schemes for many years, a few outliers remained where such parameters were not allowed, including a SQL Server “TOP N” statement, such as:

SELECT TOP 5 mytable.id, mytable.data FROM mytable

as well as with Oracle, where the FIRST_ROWS() hint (which SQLAlchemy will use if the optimize_limits=True parameter is passed to create_engine() with an Oracle URL) does not allow them, but also that using bound parameters with ROWNUM comparisons has been reported as producing slower query plans:

SELECT anon_1.id, anon_1.data FROM (
    SELECT /*+ FIRST_ROWS(5) */
    anon_2.id AS id,
    anon_2.data AS data,
    ROWNUM AS ora_rn FROM (
        SELECT mytable.id, mytable.data FROM mytable
    ) anon_2
    WHERE ROWNUM <= :param_1
) anon_1 WHERE ora_rn > :param_2

In order to allow for all statements to be unconditionally cacheable at the compilation level, a new form of bound parameter called a “post compile” parameter has been added, which makes use of the same mechanism as that of “expanding IN parameters”. This is a bindparam() that behaves identically to any other bound parameter except that parameter value will be rendered literally into the SQL string before sending it to the DBAPI cursor.execute() method. The new parameter is used internally by the SQL Server and Oracle dialects, so that the drivers receive the literal rendered value but the rest of SQLAlchemy can still consider this as a bound parameter. The above two statements when stringified using str(statement.compile(dialect=<dialect>)) now look like:

SELECT TOP [POSTCOMPILE_param_1] mytable.id, mytable.data FROM mytable

and:

SELECT anon_1.id, anon_1.data FROM (
    SELECT /*+ FIRST_ROWS([POSTCOMPILE__ora_frow_1]) */
    anon_2.id AS id,
    anon_2.data AS data,
    ROWNUM AS ora_rn FROM (
        SELECT mytable.id, mytable.data FROM mytable
    ) anon_2
    WHERE ROWNUM <= [POSTCOMPILE_param_1]
) anon_1 WHERE ora_rn > [POSTCOMPILE_param_2]

The [POSTCOMPILE_<param>] format is also what is seen when an “expanding IN” is used.

When viewing the SQL logging output, the final form of the statement will be seen:

SELECT anon_1.id, anon_1.data FROM (
    SELECT /*+ FIRST_ROWS(5) */
    anon_2.id AS id,
    anon_2.data AS data,
    ROWNUM AS ora_rn FROM (
        SELECT mytable.id AS id, mytable.data AS data FROM mytable
    ) anon_2
    WHERE ROWNUM <= 8
) anon_1 WHERE ora_rn > 3

The “post compile parameter” feature is exposed as public API through the bindparam.literal_execute parameter, however is currently not intended for general use. The literal values are rendered using the TypeEngine.literal_processor() of the underlying datatype, which in SQLAlchemy has extremely limited scope, supporting only integers and simple string values.

#4808

Connection-level transactions can now be inactive based on subtransaction

A Connection now includes the behavior where a Transaction can be made inactive due to a rollback on an inner transaction, however the Transaction will not clear until it is itself rolled back.

This is essentially a new error condition which will disallow statement executions to proceed on a Connection if an inner “sub” transaction has been rolled back. The behavior works very similarly to that of the ORM Session, where if an outer transaction has been begun, it needs to be rolled back to clear the invalid transaction; this behavior is described in “This Session’s transaction has been rolled back due to a previous exception during flush.” (or similar).

While the Connection has had a less strict behavioral pattern than the Session, this change was made as it helps to identify when a subtransaction has rolled back the DBAPI transaction, however the external code isn’t aware of this and attempts to continue proceeding, which in fact runs operations on a new transaction. The “test harness” pattern described at Joining a Session into an External Transaction (such as for test suites) is the common place for this to occur.

The “subtransaction” feature of Core and ORM is itself deprecated and will no longer be present in version 2.0. As a result, this new error condition is itself temporary as it will no longer apply once subtransactions are removed.

In order to work with the 2.0 style behavior that does not include subtransactions, use the create_engine.future parameter on create_engine().

The error message is described in the errors page at This connection is on an inactive transaction. Please rollback() fully before proceeding.

Enum and Boolean datatypes no longer default to “create constraint”

The Enum.create_constraint and Boolean.create_constraint parameters now default to False, indicating when a so-called “non-native” version of these two datatypes is created, a CHECK constraint will not be generated by default. These CHECK constraints present schema-management maintenance complexities that should be opted in to, rather than being turned on by default.

To ensure that a CREATE CONSTRAINT is emitted for these types, set these flags to True:

class Spam(Base):
    __tablename__ = "spam"
    id = Column(Integer, primary_key=True)
    boolean = Column(Boolean(create_constraint=True))
    enum = Column(Enum("a", "b", "c", create_constraint=True))

#5367

New Features - ORM

Raiseload for Columns

The “raiseload” feature, which raises InvalidRequestError when an unloaded attribute is accessed, is now available for column-oriented attributes using the defer.raiseload parameter of defer(). This works in the same manner as that of the raiseload() option used by relationship loading:

book = session.query(Book).options(defer(Book.summary, raiseload=True)).first()

# would raise an exception
book.summary

To configure column-level raiseload on a mapping, the deferred.raiseload parameter of deferred() may be used. The undefer() option may then be used at query time to eagerly load the attribute:

class Book(Base):
    __tablename__ = "book"

    book_id = Column(Integer, primary_key=True)
    title = Column(String(200), nullable=False)
    summary = deferred(Column(String(2000)), raiseload=True)
    excerpt = deferred(Column(Text), raiseload=True)


book_w_excerpt = session.query(Book).options(undefer(Book.excerpt)).first()

It was originally considered that the existing raiseload() option that works for relationship() attributes be expanded to also support column-oriented attributes. However, this would break the “wildcard” behavior of raiseload(), which is documented as allowing one to prevent all relationships from loading:

session.query(Order).options(joinedload(Order.items), raiseload("*"))

Above, if we had expanded raiseload() to accommodate for columns as well, the wildcard would also prevent columns from loading and thus be a backwards incompatible change; additionally, it’s not clear if raiseload() covered both column expressions and relationships, how one would achieve the effect above of only blocking relationship loads, without new API being added. So to keep things simple, the option for columns remains on defer():

raiseload() - query option to raise for relationship loads

defer.raiseload - query option to raise for column expression loads

As part of this change, the behavior of “deferred” in conjunction with attribute expiration has changed. Previously, when an object would be marked as expired, and then unexpired via the access of one of the expired attributes, attributes which were mapped as “deferred” at the mapper level would also load. This has been changed such that an attribute that is deferred in the mapping will never “unexpire”, it only loads when accessed as part of the deferral loader.

An attribute that is not mapped as “deferred”, however was deferred at query time via the defer() option, will be reset when the object or attribute is expired; that is, the deferred option is removed. This is the same behavior as was present previously.

#4826

ORM Batch inserts with psycopg2 now batch statements with RETURNING in most cases

The change in psycopg2 dialect features “execute_values” with RETURNING for INSERT statements by default adds support for “executemany” + “RETURNING” at the same time in Core, which is now enabled for the psycopg2 dialect by default using the psycopg2 execute_values() extension. The ORM flush process now makes use of this feature such that the retrieval of newly generated primary key values and server defaults can be achieved while not losing the performance benefits of being able to batch INSERT statements together. Additionally, psycopg2’s execute_values() extension itself provides a five-fold performance improvement over psycopg2’s default “executemany” implementation, by rewriting an INSERT statement to include many “VALUES” expressions all in one statement rather than invoking the same statement repeatedly, as psycopg2 lacks the ability to PREPARE the statement ahead of time as would normally be expected for this approach to be performant.

SQLAlchemy includes a performance suite within its examples, where we can compare the times generated for the “batch_inserts” runner against 1.3 and 1.4, revealing a 3x-5x speedup for most flavors of batch insert:

# 1.3
$ python -m examples.performance bulk_inserts --dburl postgresql://scott:tiger@localhost/test
test_flush_no_pk : (100000 iterations); total time 14.051527 sec
test_bulk_save_return_pks : (100000 iterations); total time 15.002470 sec
test_flush_pk_given : (100000 iterations); total time 7.863680 sec
test_bulk_save : (100000 iterations); total time 6.780378 sec
test_bulk_insert_mappings :  (100000 iterations); total time 5.363070 sec
test_core_insert : (100000 iterations); total time 5.362647 sec

# 1.4 with enhancement
$ python -m examples.performance bulk_inserts --dburl postgresql://scott:tiger@localhost/test
test_flush_no_pk : (100000 iterations); total time 3.820807 sec
test_bulk_save_return_pks : (100000 iterations); total time 3.176378 sec
test_flush_pk_given : (100000 iterations); total time 4.037789 sec
test_bulk_save : (100000 iterations); total time 2.604446 sec
test_bulk_insert_mappings : (100000 iterations); total time 1.204897 sec
test_core_insert : (100000 iterations); total time 0.958976 sec

Note that the execute_values() extension modifies the INSERT statement in the psycopg2 layer, after it’s been logged by SQLAlchemy. So with SQL logging, one will see the parameter sets batched together, but the joining of multiple “values” will not be visible on the application side:

2020-06-27 19:08:18,166 INFO sqlalchemy.engine.Engine INSERT INTO a (data) VALUES (%(data)s) RETURNING a.id
2020-06-27 19:08:18,166 INFO sqlalchemy.engine.Engine [generated in 0.00698s] ({'data': 'data 1'}, {'data': 'data 2'}, {'data': 'data 3'}, {'data': 'data 4'}, {'data': 'data 5'}, {'data': 'data 6'}, {'data': 'data 7'}, {'data': 'data 8'}  ... displaying 10 of 4999 total bound parameter sets ...  {'data': 'data 4998'}, {'data': 'data 4999'})
2020-06-27 19:08:18,254 INFO sqlalchemy.engine.Engine COMMIT

The ultimate INSERT statement can be seen by enabling statement logging on the PostgreSQL side:

2020-06-27 19:08:18.169 EDT [26960] LOG:  statement: INSERT INTO a (data)
VALUES ('data 1'),('data 2'),('data 3'),('data 4'),('data 5'),('data 6'),('data
7'),('data 8'),('data 9'),('data 10'),('data 11'),('data 12'),
... ('data 999'),('data 1000') RETURNING a.id

2020-06-27 19:08:18.175 EDT
[26960] LOG:  statement: INSERT INTO a (data) VALUES ('data 1001'),('data
1002'),('data 1003'),('data 1004'),('data 1005 '),('data 1006'),('data
1007'),('data 1008'),('data 1009'),('data 1010'),('data 1011'), ...

The feature batches rows into groups of 1000 by default which can be affected using the executemany_values_page_size argument documented at psycopg2_executemany_mode.

#5263

ORM Bulk Update and Delete use RETURNING for “fetch” strategy when available

An ORM bulk update or delete that uses the “fetch” strategy:

sess.query(User).filter(User.age > 29).update(
    {"age": User.age - 10}, synchronize_session="fetch"
)

Will now use RETURNING if the backend database supports it; this currently includes PostgreSQL and SQL Server (the Oracle dialect does not support RETURNING of multiple rows):

UPDATE users SET age_int=(users.age_int - %(age_int_1)s) WHERE users.age_int > %(age_int_2)s RETURNING users.id
[generated in 0.00060s] {'age_int_1': 10, 'age_int_2': 29}
Col ('id',)
Row (2,)
Row (4,)

For backends that do not support RETURNING of multiple rows, the previous approach of emitting SELECT for the primary keys beforehand is still used:

SELECT users.id FROM users WHERE users.age_int > %(age_int_1)s
[generated in 0.00043s] {'age_int_1': 29}
Col ('id',)
Row (2,)
Row (4,)
UPDATE users SET age_int=(users.age_int - %(age_int_1)s) WHERE users.age_int > %(age_int_2)s
[generated in 0.00102s] {'age_int_1': 10, 'age_int_2': 29}

One of the intricate challenges of this change is to support cases such as the horizontal sharding extension, where a single bulk update or delete may be multiplexed among backends some of which support RETURNING and some don’t. The new 1.4 execution architecture supports this case so that the “fetch” strategy can be left intact with a graceful degrade to using a SELECT, rather than having to add a new “returning” strategy that would not be backend-agnostic.

As part of this change, the “fetch” strategy is also made much more efficient in that it will no longer expire the objects located which match the rows, for Python expressions used in the SET clause which can be evaluated in Python; these are instead assigned directly onto the object in the same way as the “evaluate” strategy. Only for SQL expressions that can’t be evaluated does it fall back to expiring the attributes. The “evaluate” strategy has also been enhanced to fall back to “expire” for a value that cannot be evaluated.

Behavioral Changes - ORM

The “KeyedTuple” object returned by Query is replaced by Row

As discussed at RowProxy is no longer a “proxy”; is now called Row and behaves like an enhanced named tuple, the Core RowProxy object is now replaced by a class called Row. The base Row object now behaves more fully like a named tuple, and as such it is now used as the basis for tuple-like results returned by the Query object, rather than the previous “KeyedTuple” class.

The rationale is so that by SQLAlchemy 2.0, both Core and ORM SELECT statements will return result rows using the same Row object which behaves like a named tuple. Dictionary-like functionality is available from Row via the Row._mapping attribute. In the interim, Core result sets will make use of a Row subclass LegacyRow which maintains the previous dict/tuple hybrid behavior for backwards compatibility while the Row class will be used directly for ORM tuple results returned by the Query object.

Effort has been made to get most of the featureset of Row to be available within the ORM, meaning that access by string name as well as entity / column should work:

row = s.query(User, Address).join(User.addresses).first()

row._mapping[User]  # same as row[0]
row._mapping[Address]  # same as row[1]
row._mapping["User"]  # same as row[0]
row._mapping["Address"]  # same as row[1]

u1 = aliased(User)
row = s.query(u1).only_return_tuples(True).first()
row._mapping[u1]  # same as row[0]


row = s.query(User.id, Address.email_address).join(User.addresses).first()

row._mapping[User.id]  # same as row[0]
row._mapping["id"]  # same as row[0]
row._mapping[users.c.id]  # same as row[0]

#4710.

Session features new “autobegin” behavior

Previously, the Session in its default mode of autocommit=False would internally begin a SessionTransaction object immediately on construction, and additionally would create a new one after each call to Session.rollback() or Session.commit().

The new behavior is that this SessionTransaction object is now created on demand only, when methods such as Session.add() or Session.execute() are called. However it is also now possible to call Session.begin() explicitly in order to begin the transaction, even in autocommit=False mode, thus matching the behavior of the future-style _base.Connection.

The behavioral changes this indicates are:

  • The Session can now be in the state where no transaction is begun, even in autocommit=False mode. Previously, this state was only available in “autocommit” mode.

  • Within this state, the Session.commit() and Session.rollback() methods are no-ops. Code that relies upon these methods to expire all objects should make explicit use of either Session.begin() or Session.expire_all() to suit their use case.

  • The SessionEvents.after_transaction_create() event hook is not emitted immediately when the Session is created, or after a Session.rollback() or Session.commit() completes.

  • The Session.close() method also does not imply implicit begin of a new SessionTransaction.

See also

Auto Begin

Rationale

The Session object’s default behavior of autocommit=False historically has meant that there is always a SessionTransaction object in play, associated with the Session via the Session.transaction attribute. When the given SessionTransaction was complete, due to a commit, rollback, or close, it was immediately replaced with a new one. The SessionTransaction by itself does not imply the usage of any connection-oriented resources, so this long-standing behavior has a particular elegance to it in that the state of Session.transaction is always predictable as non-None.

However, as part of the initiative in #5056 to greatly reduce reference cycles, this assumption means that calling upon Session.close() results in a Session object that still has reference cycles and is more expensive to clean up, not to mention that there is a small overhead in constructing the SessionTransaction object, which meant that there would be unnecessary overhead created for a Session that for example invoked Session.commit() and then Session.close().

As such, it was decided that Session.close() should leave the internal state of self.transaction, now referred to internally as self._transaction, as None, and that a new SessionTransaction should only be created when needed. For consistency and code coverage, this behavior was also expanded to include all the points at which “autobegin” is expected, not just when Session.close() were called.

In particular, this causes a behavioral change for applications which subscribe to the SessionEvents.after_transaction_create() event hook; previously, this event would be emitted when the Session were first constructed, as well as for most actions that closed the previous transaction and would emit SessionEvents.after_transaction_end(). The new behavior is that SessionEvents.after_transaction_create() is emitted on demand, when the Session has not yet created a new SessionTransaction object and mapped objects are associated with the Session through methods like Session.add() and Session.delete(), when the Session.transaction attribute is called upon, when the Session.flush() method has tasks to complete, etc.

In addition, code which relies upon the Session.commit() or Session.rollback() method to unconditionally expire all objects can no longer do so. Code which needs to expire all objects when no change that has occurred should be calling Session.expire_all() for this case.

Besides the change in when the SessionEvents.after_transaction_create() event is emitted as well as the no-op nature of Session.commit() or Session.rollback(), the change should have no other user-visible impact on the Session object’s behavior; the Session will continue to have the behavior that it remains usable for new operations after Session.close() is called, and the sequencing of how the Session interacts with the Engine and the database itself should also remain unaffected, since these operations were already operating in an on-demand fashion.

#5074

Viewonly relationships don’t synchronize backrefs

In #5149 in 1.3.14, SQLAlchemy began emitting a warning when the relationship.backref or relationship.back_populates keywords would be used at the same time as the relationship.viewonly flag on the target relationship. This was because a “viewonly” relationship does not actually persist changes made to it, which could cause some misleading behaviors to occur. However, in #5237, we sought to refine this behavior as there are legitimate use cases to have backrefs set up on viewonly relationships, including that back populates attributes are used in some cases by the relationship lazy loaders to determine that an additional eager load in the other direction is not necessary, as well as that back populates can be used for mapper introspection and that backref() can be a convenient way to set up bi-directional relationships.

The solution then was to make the “mutation” that occurs from a backref an optional thing, using the relationship.sync_backref flag. In 1.4 the value of relationship.sync_backref defaults to False for a relationship target that also sets relationship.viewonly. This indicates that any changes made to a relationship with viewonly will not impact the state of the other side or of the Session in any way:

class User(Base):
    # ...

    addresses = relationship(Address, backref=backref("user", viewonly=True))

class Address(Base):
    # ...


u1 = session.query(User).filter_by(name="x").first()

a1 = Address()
a1.user = u1

Above, the a1 object will not be added to the u1.addresses collection, nor will the a1 object be added to the session. Previously, both of these things would be true. The warning that relationship.sync_backref should be set to False when relationship.viewonly is False is no longer emitted as this is now the default behavior.

#5237

cascade_backrefs behavior deprecated for removal in 2.0

SQLAlchemy has long had a behavior of cascading objects into the Session based on backref assignment. Given User below already in a Session, assigning it to the Address.user attribute of an Address object, assuming a bidirectional relationship is set up, would mean that the Address also gets put into the Session at that point:

u1 = User()
session.add(u1)

a1 = Address()
a1.user = u1  # <--- adds "a1" to the Session

The above behavior was an unintended side effect of backref behavior, in that since a1.user implies u1.addresses.append(a1), a1 would get cascaded into the Session. This remains the default behavior throughout 1.4. At some point, a new flag relationship.cascade_backrefs was added to disable to above behavior, along with backref.cascade_backrefs to set this when the relationship is specified by relationship.backref, as it can be surprising and also gets in the way of some operations where the object would be placed in the Session too early and get prematurely flushed.

In 2.0, the default behavior will be that “cascade_backrefs” is False, and additionally there will be no “True” behavior as this is not generally a desirable behavior. When 2.0 deprecation warnings are enabled, a warning will be emitted when a “backref cascade” actually takes place. To get the new behavior, either set relationship.cascade_backrefs and backref.cascade_backrefs to False on any target relationships, as is already supported in 1.3 and earlier, or alternatively make use of the Session.future flag to 2.0-style mode:

Session = sessionmaker(engine, future=True)

with Session() as session:
    u1 = User()
    session.add(u1)

    a1 = Address()
    a1.user = u1  # <--- will not add "a1" to the Session

#5150

Eager loaders emit during unexpire operations

A long sought behavior was that when an expired object is accessed, configured eager loaders will run in order to eagerly load relationships on the expired object when the object is refreshed or otherwise unexpired. This behavior has now been added, so that joinedloaders will add inline JOINs as usual, and selectin/subquery loaders will run an “immediateload” operation for a given relationship, when an expired object is unexpired or an object is refreshed:

>>> a1 = session.query(A).options(joinedload(A.bs)).first()
>>> a1.data = "new data"
>>> session.commit()

Above, the A object was loaded with a joinedload() option associated with it in order to eagerly load the bs collection. After the session.commit(), the state of the object is expired. Upon accessing the .data column attribute, the object is refreshed and this will now include the joinedload operation as well:

>>> a1.data
SELECT a.id AS a_id, a.data AS a_data, b_1.id AS b_1_id, b_1.a_id AS b_1_a_id
FROM a LEFT OUTER JOIN b AS b_1 ON a.id = b_1.a_id
WHERE a.id = ?

The behavior applies both to loader strategies applied to the relationship() directly, as well as with options used with Query.options(), provided that the object was originally loaded by that query.

For the “secondary” eager loaders “selectinload” and “subqueryload”, the SQL strategy for these loaders is not necessary in order to eagerly load attributes on a single object; so they will instead invoke the “immediateload” strategy in a refresh scenario, which resembles the query emitted by “lazyload”, emitted as an additional query:

>>> a1 = session.query(A).options(selectinload(A.bs)).first()
>>> a1.data = "new data"
>>> session.commit()
>>> a1.data
SELECT a.id AS a_id, a.data AS a_data
FROM a
WHERE a.id = ?
(1,)
SELECT b.id AS b_id, b.a_id AS b_a_id
FROM b
WHERE ? = b.a_id
(1,)

Note that a loader option does not apply to an object that was introduced into the Session in a different way. That is, if the a1 object were just persisted in this Session, or was loaded with a different query before the eager option had been applied, then the object doesn’t have an eager load option associated with it. This is not a new concept, however users who are looking for the eagerload on refresh behavior may find this to be more noticeable.

#1763

Accessing an uninitialized collection attribute on a transient object no longer mutates __dict__

It has always been SQLAlchemy’s behavior that accessing mapped attributes on a newly created object returns an implicitly generated value, rather than raising AttributeError, such as None for scalar attributes or [] for a list-holding relationship:

>>> u1 = User()
>>> u1.name
None
>>> u1.addresses
[]

The rationale for the above behavior was originally to make ORM objects easier to work with. Since an ORM object represents an empty row when first created without any state, it is intuitive that its un-accessed attributes would resolve to None (or SQL NULL) for scalars and to empty collections for relationships. In particular, it makes possible an extremely common pattern of being able to mutate the new collection without manually creating and assigning an empty collection first:

>>> u1 = User()
>>> u1.addresses.append(Address())  # no need to assign u1.addresses = []

Up until version 1.0 of SQLAlchemy, the behavior of this initialization system for both scalar attributes as well as collections would be that the None or empty collection would be populated into the object’s state, e.g. __dict__. This meant that the following two operations were equivalent:

>>> u1 = User()
>>> u1.name = None  # explicit assignment

>>> u2 = User()
>>> u2.name  # implicit assignment just by accessing it
None

Where above, both u1 and u2 would have the value None populated in the value of the name attribute. Since this is a SQL NULL, the ORM would skip including these values within an INSERT so that SQL-level defaults take place, if any, else the value defaults to NULL on the database side.

In version 1.0 as part of Changes to attribute events and other operations regarding attributes that have no pre-existing value, this behavior was refined so that the None value was no longer populated into __dict__, only returned. Besides removing the mutating side effect of a getter operation, this change also made it possible to set columns that did have server defaults to the value NULL by actually assigning None, which was now distinguished from just reading it.

The change however did not accommodate for collections, where returning an empty collection that is not assigned meant that this mutable collection would be different each time and also would not be able to correctly accommodate for mutating operations (e.g. append, add, etc.) called upon it. While the behavior continued to generally not get in anyone’s way, an edge case was eventually identified in #4519 where this empty collection could be harmful, which is when the object is merged into a session:

>>> u1 = User(id=1)  # create an empty User to merge with id=1 in the database
>>> merged1 = session.merge(
...     u1
... )  # value of merged1.addresses is unchanged from that of the DB

>>> u2 = User(id=2)  # create an empty User to merge with id=2 in the database
>>> u2.addresses
[]
>>> merged2 = session.merge(u2)  # value of merged2.addresses has been emptied in the DB

Above, the .addresses collection on merged1 will contain all the Address() objects that were already in the database. merged2 will not; because it has an empty list implicitly assigned, the .addresses collection will be erased. This is an example of where this mutating side effect can actually mutate the database itself.

While it was considered that perhaps the attribute system should begin using strict “plain Python” behavior, raising AttributeError in all cases for non-existent attributes on non-persistent objects and requiring that all collections be explicitly assigned, such a change would likely be too extreme for the vast number of applications that have relied upon this behavior for many years, leading to a complex rollout / backwards compatibility problem as well as the likelihood that workarounds to restore the old behavior would become prevalent, thus rendering the whole change ineffective in any case.

The change then is to keep the default producing behavior, but to finally make the non-mutating behavior of scalars a reality for collections as well, via the addition of additional mechanics in the collection system. When accessing the empty attribute, the new collection is created and associated with the state, however is not added to __dict__ until it is actually mutated:

>>> u1 = User()
>>> l1 = u1.addresses  # new list is created, associated with the state
>>> assert u1.addresses is l1  # you get the same list each time you access it
>>> assert (
...     "addresses" not in u1.__dict__
... )  # but it won't go into __dict__ until it's mutated
>>> from sqlalchemy import inspect
>>> inspect(u1).attrs.addresses.history
History(added=None, unchanged=None, deleted=None)

When the list is changed, then it becomes part of the tracked changes to be persisted to the database:

>>> l1.append(Address())
>>> assert "addresses" in u1.__dict__
>>> inspect(u1).attrs.addresses.history
History(added=[<__main__.Address object at 0x7f49b725eda0>], unchanged=[], deleted=[])

This change is expected to have nearly no impact on existing applications in any way, except that it has been observed that some applications may be relying upon the implicit assignment of this collection, such as to assert that the object contains certain values based on its __dict__:

>>> u1 = User()
>>> u1.addresses
[]
# this will now fail, would pass before
>>> assert {k: v for k, v in u1.__dict__.items() if not k.startswith("_")} == {
...     "addresses": []
... }

or to ensure that the collection won’t require a lazy load to proceed, the (admittedly awkward) code below will now also fail:

>>> u1 = User()
>>> u1.addresses
[]
>>> s.add(u1)
>>> s.flush()
>>> s.close()
>>> u1.addresses  # <-- will fail, .addresses is not loaded and object is detached

Applications that rely upon the implicit mutating behavior of collections will need to be changed so that they assign the desired collection explicitly:

>>> u1.addresses = []

#4519

The “New instance conflicts with existing identity” error is now a warning

SQLAlchemy has always had logic to detect when an object in the Session to be inserted has the same primary key as an object that is already present:

class Product(Base):
    __tablename__ = "product"

    id = Column(Integer, primary_key=True)


session = Session(engine)

# add Product with primary key 1
session.add(Product(id=1))
session.flush()

# add another Product with same primary key
session.add(Product(id=1))
s.commit()  # <-- will raise FlushError

The change is that the FlushError is altered to be only a warning:

sqlalchemy/orm/persistence.py:408: SAWarning: New instance <Product at 0x7f1ff65e0ba8> with identity key (<class '__main__.Product'>, (1,), None) conflicts with persistent instance <Product at 0x7f1ff60a4550>

Subsequent to that, the condition will attempt to insert the row into the database which will emit IntegrityError, which is the same error that would be raised if the primary key identity was not already present in the Session:

sqlalchemy.exc.IntegrityError: (sqlite3.IntegrityError) UNIQUE constraint failed: product.id

The rationale is to allow code that is using IntegrityError to catch duplicates to function regardless of the existing state of the Session, as is often done using savepoints:

# add another Product with same primary key
try:
    with session.begin_nested():
        session.add(Product(id=1))
except exc.IntegrityError:
    print("row already exists")

The above logic was not fully feasible earlier, as in the case that the Product object with the existing identity were already in the Session, the code would also have to catch FlushError, which additionally is not filtered for the specific condition of integrity issues. With the change, the above block behaves consistently with the exception of the warning also being emitted.

Since the logic in question deals with the primary key, all databases emit an integrity error in the case of primary key conflicts on INSERT. The case where an error would not be raised, that would have earlier, is the extremely unusual scenario of a mapping that defines a primary key on the mapped selectable that is more restrictive than what is actually configured in the database schema, such as when mapping to joins of tables or when defining additional columns as part of a composite primary key that is not actually constrained in the database schema. However, these situations also work more consistently in that the INSERT would theoretically proceed whether or not the existing identity were still in the database. The warning can also be configured to raise an exception using the Python warnings filter.

#4662

Stricter behavior when querying inheritance mappings using custom queries

This change applies to the scenario where a joined- or single- table inheritance subclass entity is being queried, given a completed SELECT subquery to select from. If the given subquery returns rows that do not correspond to the requested polymorphic identity or identities, an error is raised. Previously, this condition would pass silently under joined table inheritance, returning an invalid subclass, and under single table inheritance, the Query would be adding additional criteria against the subquery to limit the results which could inappropriately interfere with the intent of the query.

Given the example mapping of Employee, Engineer(Employee), Manager(Employee), in the 1.3 series if we were to emit the following query against a joined inheritance mapping:

s = Session(e)

s.add_all([Engineer(), Manager()])

s.commit()

print(s.query(Manager).select_entity_from(s.query(Employee).subquery()).all())

The subquery selects both the Engineer and the Manager rows, and even though the outer query is against Manager, we get a non Manager object back:

SELECT anon_1.type AS anon_1_type, anon_1.id AS anon_1_id
FROM (SELECT employee.type AS type, employee.id AS id
FROM employee) AS anon_1
2020-01-29 18:04:13,524 INFO sqlalchemy.engine.base.Engine ()
[<__main__.Engineer object at 0x7f7f5b9a9810>, <__main__.Manager object at 0x7f7f5b9a9750>]

The new behavior is that this condition raises an error:

sqlalchemy.exc.InvalidRequestError: Row with identity key
(<class '__main__.Employee'>, (1,), None) can't be loaded into an object;
the polymorphic discriminator column '%(140205120401296 anon)s.type'
refers to mapped class Engineer->engineer, which is not a sub-mapper of
the requested mapped class Manager->manager

The above error only raises if the primary key columns of that entity are non-NULL. If there’s no primary key for a given entity in a row, no attempt to construct an entity is made.

In the case of single inheritance mapping, the change in behavior is slightly more involved; if Engineer and Manager above are mapped with single table inheritance, in 1.3 the following query would be emitted and only a Manager object is returned:

SELECT anon_1.type AS anon_1_type, anon_1.id AS anon_1_id
FROM (SELECT employee.type AS type, employee.id AS id
FROM employee) AS anon_1
WHERE anon_1.type IN (?)
2020-01-29 18:08:32,975 INFO sqlalchemy.engine.base.Engine ('manager',)
[<__main__.Manager object at 0x7ff1b0200d50>]

The Query added the “single table inheritance” criteria to the subquery, editorializing on the intent that was originally set up by it. This behavior was added in version 1.0 in #3891, and creates a behavioral inconsistency between “joined” and “single” table inheritance, and additionally modifies the intent of the given query, which may intend to return additional rows where the columns that correspond to the inheriting entity are NULL, which is a valid use case. The behavior is now equivalent to that of joined table inheritance, where it is assumed that the subquery returns the correct rows and an error is raised if an unexpected polymorphic identity is encountered:

SELECT anon_1.type AS anon_1_type, anon_1.id AS anon_1_id
FROM (SELECT employee.type AS type, employee.id AS id
FROM employee) AS anon_1
2020-01-29 18:13:10,554 INFO sqlalchemy.engine.base.Engine ()
Traceback (most recent call last):
# ...
sqlalchemy.exc.InvalidRequestError: Row with identity key
(<class '__main__.Employee'>, (1,), None) can't be loaded into an object;
the polymorphic discriminator column '%(140700085268432 anon)s.type'
refers to mapped class Engineer->employee, which is not a sub-mapper of
the requested mapped class Manager->employee

The correct adjustment to the situation as presented above which worked on 1.3 is to adjust the given subquery to correctly filter the rows based on the discriminator column:

print(
    s.query(Manager).select_entity_from(
        s.query(Employee).filter(Employee.discriminator == 'manager').
        subquery()).all()
)

SELECT anon_1.type AS anon_1_type, anon_1.id AS anon_1_id
FROM (SELECT employee.type AS type, employee.id AS id
FROM employee
WHERE employee.type = ?) AS anon_1
2020-01-29 18:14:49,770 INFO sqlalchemy.engine.base.Engine ('manager',)
[<__main__.Manager object at 0x7f70e13fca90>]

#5122

Dialect Changes

pg8000 minimum version is 1.16.6, supports Python 3 only

Support for the pg8000 dialect has been dramatically improved, with help from the project’s maintainer.

Due to API changes, the pg8000 dialect now requires version 1.16.6 or greater. The pg8000 series has dropped Python 2 support as of the 1.13 series. Python 2 users who require pg8000 should ensure their requirements are pinned at SQLAlchemy<1.4.

#5451

psycopg2 version 2.7 or higher is required for the PostgreSQL psycopg2 dialect

The psycopg2 dialect relies upon many features of psycopg2 released in the past few years. To simplify the dialect, version 2.7, released in March, 2017 is now the minimum version required.

psycopg2 dialect no longer has limitations regarding bound parameter names

SQLAlchemy 1.3 was not able to accommodate bound parameter names that included percent signs or parenthesis under the psycopg2 dialect. This in turn meant that column names which included these characters were also problematic as INSERT and other DML statements would generate parameter names that matched that of the column, which would then cause failures. The workaround was to make use of the Column.key parameter so that an alternate name that would be used to generate the parameter, or otherwise the parameter style of the dialect had to be changed at the create_engine() level. As of SQLAlchemy 1.4.0beta3 all naming limitations have been removed and parameters are fully escaped in all scenarios, so these workarounds are no longer necessary.

#5941

#5653

psycopg2 dialect features “execute_values” with RETURNING for INSERT statements by default

The first half of a significant performance enhancement for PostgreSQL when using both Core and ORM, the psycopg2 dialect now uses psycopg2.extras.execute_values() by default for compiled INSERT statements and also implements RETURNING support in this mode. The other half of this change is ORM Batch inserts with psycopg2 now batch statements with RETURNING in most cases which allows the ORM to take advantage of RETURNING with executemany (i.e. batching of INSERT statements) so that ORM bulk inserts with psycopg2 are up to 400% faster depending on specifics.

This extension method allows many rows to be INSERTed within a single statement, using an extended VALUES clause for the statement. While SQLAlchemy’s insert() construct already supports this syntax via the Insert.values() method, the extension method allows the construction of the VALUES clause to occur dynamically when the statement is executed as an “executemany” execution, which is what occurs when one passes a list of parameter dictionaries to Connection.execute(). It also occurs beyond the cache boundary so that the INSERT statement may be cached before the VALUES are rendered.

A quick test of the execute_values() approach using the bulk_inserts.py script in the Performance example suite reveals an approximate fivefold performance increase:

$ python -m examples.performance bulk_inserts --test test_core_insert --num 100000 --dburl postgresql://scott:tiger@localhost/test

# 1.3
test_core_insert : A single Core INSERT construct inserting mappings in bulk. (100000 iterations); total time 5.229326 sec

# 1.4
test_core_insert : A single Core INSERT construct inserting mappings in bulk. (100000 iterations); total time 0.944007 sec

Support for the “batch” extension was added in version 1.2 in Support for Batch Mode / Fast Execution Helpers, and enhanced to include support for the execute_values extension in 1.3 in #4623. In 1.4 the execute_values extension is now being turned on by default for INSERT statements; the “batch” extension for UPDATE and DELETE remains off by default.

In addition, the execute_values extension function supports returning the rows that are generated by RETURNING as an aggregated list. The psycopg2 dialect will now retrieve this list if the given insert() construct requests returning via the Insert.returning() method or similar methods intended to return generated defaults; the rows are then installed in the result so that they are retrieved as though they came from the cursor directly. This allows tools like the ORM to use batched inserts in all cases, which is expected to provide a dramatic performance improvement.

The executemany_mode feature of the psycopg2 dialect has been revised with the following changes:

  • A new mode "values_only" is added. This mode uses the very performant psycopg2.extras.execute_values() extension method for compiled INSERT statements run with executemany(), but does not use execute_batch() for UPDATE and DELETE statements. This new mode is now the default setting for the psycopg2 dialect.

  • The existing "values" mode is now named "values_plus_batch". This mode will use execute_values for INSERT statements and execute_batch for UPDATE and DELETE statements. The mode is not enabled by default because it disables the proper functioning of cursor.rowcount with UPDATE and DELETE statements executed with executemany().

  • RETURNING support is enabled for "values_only" and "values" for INSERT statements. The psycopg2 dialect will receive the rows back from psycopg2 using the fetch=True flag and install them into the result set as though they came directly from the cursor (which they ultimately did, however psycopg2’s extension function has aggregated multiple batches into one list).

  • The default “page_size” setting for execute_values has been increased from 100 to 1000. The default remains at 100 for the execute_batch function. These parameters may both be modified as was the case before.

  • The use_batch_mode flag that was part of the 1.2 version of the feature is removed; the behavior remains controllable via the executemany_mode flag added in 1.3.

  • The Core engine and dialect has been enhanced to support executemany plus returning mode, currently only available with psycopg2, by providing new CursorResult.inserted_primary_key_rows and CursorResult.returned_default_rows accessors.

See also

psycopg2_executemany_mode

#5401

Removed “join rewriting” logic from SQLite dialect; updated imports

Dropped support for right-nested join rewriting to support old SQLite versions prior to 3.7.16, released in 2013. It is not expected that any modern Python versions rely upon this limitation.

The behavior was first introduced in 0.9 and was part of the larger change of allowing for right nested joins as described at Many JOIN and LEFT OUTER JOIN expressions will no longer be wrapped in (SELECT * FROM ..) AS ANON_1. However the SQLite workaround produced many regressions in the 2013-2014 period due to its complexity. In 2016, the dialect was modified so that the join rewriting logic would only occur for SQLite versions prior to 3.7.16 after bisection was used to identify where SQLite fixed its support for this construct, and no further issues were reported against the behavior (even though some bugs were found internally). It is now anticipated that there are little to no Python builds for Python 2.7 or 3.5 and above (the supported Python versions) which would include a SQLite version prior to 3.7.17, and the behavior is only necessary only in more complex ORM joining scenarios. A warning is now emitted if the installed SQLite version is older than 3.7.16.

In related changes, the module imports for SQLite no longer attempt to import the “pysqlite2” driver on Python 3 as this driver does not exist on Python 3; a very old warning for old pysqlite2 versions is also dropped.

#4895

Added Sequence support for MariaDB 10.3

The MariaDB database as of 10.3 supports sequences. SQLAlchemy’s MySQL dialect now implements support for the Sequence object against this database, meaning “CREATE SEQUENCE” DDL will be emitted for a Sequence that is present in a Table or MetaData collection in the same way as it works for backends such as PostgreSQL, Oracle, when the dialect’s server version check has confirmed the database is MariaDB 10.3 or greater. Additionally, the Sequence will act as a column default and primary key generation object when used in these ways.

Since this change will impact the assumptions both for DDL as well as the behavior of INSERT statements for an application that is currently deployed against MariaDB 10.3 which also happens to make explicit use the Sequence construct within its table definitions, it is important to note that Sequence supports a flag Sequence.optional which is used to limit the scenarios in which the Sequence to take effect. When “optional” is used on a Sequence that is present in the integer primary key column of a table:

Table(
    "some_table",
    metadata,
    Column("id", Integer, Sequence("some_seq", optional=True), primary_key=True),
)

The above Sequence is only used for DDL and INSERT statements if the target database does not support any other means of generating integer primary key values for the column. That is, the Oracle database above would use the sequence, however the PostgreSQL and MariaDB 10.3 databases would not. This may be important for an existing application that is upgrading to SQLAlchemy 1.4 which may not have emitted DDL for this Sequence against its backing database, as an INSERT statement will fail if it seeks to use a sequence that was not created.

#4976

Added Sequence support distinct from IDENTITY to SQL Server

The Sequence construct is now fully functional with Microsoft SQL Server. When applied to a Column, the DDL for the table will no longer include IDENTITY keywords and instead will rely upon “CREATE SEQUENCE” to ensure a sequence is present which will then be used for INSERT statements on the table.

The Sequence prior to version 1.3 was used to control parameters for the IDENTITY column in SQL Server; this usage emitted deprecation warnings throughout 1.3 and is now removed in 1.4. For control of parameters for an IDENTITY column, the mssql_identity_start and mssql_identity_increment parameters should be used; see the MSSQL dialect documentation linked below.

See also

mssql_identity

#4235

#4633

Back to Top