celery.utils.functional
¶
Functional-style utilties.
- class celery.utils.functional.LRUCache(limit=None)[source]¶
LRU Cache implementation using a doubly linked list to track access.
- Parameters
limit (int) – The maximum number of keys to keep in the cache. When a new key is inserted and the limit has been exceeded, the Least Recently Used key will be discarded from the cache.
- items() a set-like object providing a view on D’s items ¶
- iteritems()¶
- iterkeys()¶
- itervalues()¶
- keys() a set-like object providing a view on D’s keys ¶
- popitem() (k, v), remove and return some (key, value) pair [source]¶
as a 2-tuple; but raise KeyError if D is empty.
- update([E, ]**F) None. Update D from mapping/iterable E and F. [source]¶
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v
- values() an object providing a view on D’s values ¶
- celery.utils.functional.chunks(it, n)[source]¶
Split an iterator into chunks with n elements each.
Warning
it
must be an actual iterator, if you pass this a concrete sequence will get you repeating elements.So
chunks(iter(range(1000)), 10)
is fine, butchunks(range(1000), 10)
is not.Example
# n == 2 >>> x = chunks(iter([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), 2) >>> list(x) [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10]]
# n == 3 >>> x = chunks(iter([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), 3) >>> list(x) [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10]]
- celery.utils.functional.dictfilter(d=None, **kw)[source]¶
Remove all keys from dict
d
whose value isNone
.
- celery.utils.functional.first(predicate, it)[source]¶
Return the first element in
it
thatpredicate
accepts.If
predicate
is None it will return the first item that’s notNone
.
- celery.utils.functional.firstmethod(method, on_call=None)[source]¶
Multiple dispatch.
Return a function that with a list of instances, finds the first instance that gives a value for the given method.
The list can also contain lazy instances (
lazy
.)
- celery.utils.functional.fun_accepts_kwargs(fun)[source]¶
Return true if function accepts arbitrary keyword arguments.
- celery.utils.functional.head_from_fun(fun, bound=False, debug=False)[source]¶
Generate signature function from actual function.
- celery.utils.functional.is_list(obj, scalars=(<class 'collections.abc.Mapping'>, <class 'str'>), iters=(<class 'collections.abc.Iterable'>, ))[source]¶
Return true if the object is iterable.
Note
Returns false if object is a mapping or string.
- class celery.utils.functional.lazy(fun, *args, **kwargs)[source]¶
Holds lazy evaluation.
Evaluated when called or if the
evaluate()
method is called. The function is re-evaluated on every call.- Overloaded operations that will evaluate the promise:
__str__()
,__repr__()
,__cmp__()
.
- celery.utils.functional.mattrgetter(*attrs)[source]¶
Get attributes, ignoring attribute errors.
Like
operator.itemgetter()
but returnNone
on missing attributes instead of raisingAttributeError
.
- celery.utils.functional.maybe_evaluate(value)[source]¶
Evaluate value only if value is a
lazy
instance.
- celery.utils.functional.maybe_list(obj, scalars=(<class 'collections.abc.Mapping'>, <class 'str'>))[source]¶
Return list of one element if
l
is a scalar.
- celery.utils.functional.memoize(maxsize=None, keyfun=None, Cache=<class 'kombu.utils.functional.LRUCache'>)[source]¶
Decorator to cache function return value.
- class celery.utils.functional.mlazy(fun, *args, **kwargs)[source]¶
Memoized lazy evaluation.
The function is only evaluated once, every subsequent access will return the same value.
- evaluated = False¶
Set to
True
after the object has been evaluated.
- celery.utils.functional.noop(*args, **kwargs)[source]¶
No operation.
Takes any arguments/keyword arguments and does nothing.
- celery.utils.functional.padlist(container, size, default=None)[source]¶
Pad list with default elements.
Example
>>> first, last, city = padlist(['George', 'Costanza', 'NYC'], 3) ('George', 'Costanza', 'NYC') >>> first, last, city = padlist(['George', 'Costanza'], 3) ('George', 'Costanza', None) >>> first, last, city, planet = padlist( ... ['George', 'Costanza', 'NYC'], 4, default='Earth', ... ) ('George', 'Costanza', 'NYC', 'Earth')