How to Use Pandas GroupBy, Counts and Value Counts

Table of Contents

If you’re a data scientist, you likely spend a lot of time cleaning and manipulating data for use in your applications. One of the core libraries for preparing data is the Pandas library for Python.

In a previous post, we explored the background of Pandas and the basic usage of a Pandas DataFrame, the core data structure in Pandas. Check out that post if you want to get up to speed with the basics of Pandas.

In this post, we’ll explore a few of the core methods on Pandas DataFrames. These methods help you segment and review your DataFrames during your analysis.

We’ll cover

  • Using Pandas groupby to segment your DataFrame into groups.
  • Exploring your Pandas DataFrame with counts and value_counts.

Let’s get started.

Pandas groupby

Pandas is typically used for exploring and organizing large volumes of tabular data, like a super-powered Excel spreadsheet. Often, you’ll want to organize a pandas DataFrame into subgroups for further analysis.

For example, perhaps you have stock ticker data in a DataFrame, as we explored in the last post. Your Pandas DataFrame might look as follows:

>>> df
          date symbol     open     high      low    close    volume
0   2019-03-01   AMZN  1655.13  1674.26  1651.00  1671.73   4974877
1   2019-03-04   AMZN  1685.00  1709.43  1674.36  1696.17   6167358
2   2019-03-05   AMZN  1702.95  1707.80  1689.01  1692.43   3681522
3   2019-03-06   AMZN  1695.97  1697.75  1668.28  1668.95   3996001
4   2019-03-07   AMZN  1667.37  1669.75  1620.51  1625.95   4957017
5   2019-03-01   AAPL   174.28   175.15   172.89   174.97  25886167
6   2019-03-04   AAPL   175.69   177.75   173.97   175.85  27436203
7   2019-03-05   AAPL   175.94   176.00   174.54   175.53  19737419
8   2019-03-06   AAPL   174.67   175.49   173.94   174.52  20810384
9   2019-03-07   AAPL   173.87   174.44   172.02   172.50  24796374
10  2019-03-01   GOOG  1124.90  1142.97  1124.75  1140.99   1450316
11  2019-03-04   GOOG  1146.99  1158.28  1130.69  1147.80   1446047
12  2019-03-05   GOOG  1150.06  1169.61  1146.19  1162.03   1443174
13  2019-03-06   GOOG  1162.49  1167.57  1155.49  1157.86   1099289
14  2019-03-07   GOOG  1155.72  1156.76  1134.91  1143.30   1166559

Perhaps we want to analyze this stock information on a symbol-by-symbol basis rather than combining Amazon (“AMZN”) data with Google (“GOOG”) data or that of Apple (“AAPL”).

This is where the Pandas groupby method is useful. You can use groupby to chunk up your data into subsets for further analysis.

Basic Pandas groupby usage

Let’s do some basic usage of groupby to see how it’s helpful.

In your Python interpreter, enter the following commands:

>>> import pandas as pd
>>> import numpy as np
>>> url = 'https://gist.githubusercontent.com/alexdebrie/b3f40efc3dd7664df5a20f5eee85e854/raw/ee3e6feccba2464cbbc2e185fb17961c53d2a7f5/stocks.csv'
>>> df = pd.read_csv(url)
>>> df
          date symbol     open     high      low    close    volume
0   2019-03-01   AMZN  1655.13  1674.26  1651.00  1671.73   4974877
1   2019-03-04   AMZN  1685.00  1709.43  1674.36  1696.17   6167358
2   2019-03-05   AMZN  1702.95  1707.80  1689.01  1692.43   3681522
3   2019-03-06   AMZN  1695.97  1697.75  1668.28  1668.95   3996001
4   2019-03-07   AMZN  1667.37  1669.75  1620.51  1625.95   4957017
5   2019-03-01   AAPL   174.28   175.15   172.89   174.97  25886167
6   2019-03-04   AAPL   175.69   177.75   173.97   175.85  27436203
7   2019-03-05   AAPL   175.94   176.00   174.54   175.53  19737419
8   2019-03-06   AAPL   174.67   175.49   173.94   174.52  20810384
9   2019-03-07   AAPL   173.87   174.44   172.02   172.50  24796374
10  2019-03-01   GOOG  1124.90  1142.97  1124.75  1140.99   1450316
11  2019-03-04   GOOG  1146.99  1158.28  1130.69  1147.80   1446047
12  2019-03-05   GOOG  1150.06  1169.61  1146.19  1162.03   1443174
13  2019-03-06   GOOG  1162.49  1167.57  1155.49  1157.86   1099289
14  2019-03-07   GOOG  1155.72  1156.76  1134.91  1143.30   1166559

In the steps above, we’re importing the Pandas and NumPy libraries, then setting up a basic DataFrame by downloading CSV data from a URL. We print our DataFrame to the console to see what we have.

Back to Top