Как создать службу из функции?
Я хочу создать сервис, используя Django Rest API. У меня есть функция. Результат этой функции должен вернуть 2 значения, и я должен вернуть эти значения в формате JSON API.
Функция будет работать следующим образом. Я получу features_list
в качестве параметра и буду использовать его для создания результата и отображения его в качестве сервиса в формате json в функции def prediction
.
Я создал образец API (я предполагаю) он class PredictionSet
в моих представлениях, но на самом деле я хочу сделать сервис def prediction
функцией в моих представлениях.
Я не могу понять, как его применить. Я в полном замешательстве. Любая помощь будет оценена по достоинству.
models.py
class Liquidity(models.Model):
pred_y = models.CharField(max_length=600)
score = models.FloatField()
views.py
class PredictionSet(viewsets.ModelViewSet):
queryset = Liquidity.objects.all()
serializer_class = LiquiditySerializer
def prediction(request, features_list):
filename = config.FINAL_MODEL_PATH
classifier = pickle.load(open(filename, 'rb'))
scale_file = config.SCALER_PATH
scaler = pickle.load(open(scale_file, 'rb'))
sample = np.array(features_list).reshape(1, -1)
sample_scaled = scaler.transform(sample)
pred_y = classifier.predict(sample_scaled)
prob_y = classifier.predict_proba(sample_scaled)
if prob_y[0][1] < 0.5:
score = 0
elif prob_y[0][1] <= 0.69:
score = 1
else:
score = 2
pred_y = pred_y[0]
prediction_obj = Liquidity.objects.get_or_create(pred_y=pred_y, score=score)
prediction_result = prediction_obj.pred_y
prediction_score = prediction_obj.score
context = {
'prediction_result ': prediction_result,
'prediction_score ': prediction_score,
}
return context
serializer.py
class LiquiditySerializer(serializers.HyperlinkedModelSerializer):
class Meta:
model = Liquidity
fields = '__all__'
Если вы хотите вернуть пользовательский JSON из ModelViewset
в DRF, вы можете переопределить .list()
и/или .retrieve()
следующим образом :
from rest_framework import status
from rest_framework.response import Response
class PredictionSet(viewsets.ModelViewSet):
queryset = Liquidity.objects.all()
serializer_class = LiquiditySerializer
# Your custom function definition
def prediction(self, request, features_list):
# The content
def retrieve(self, request, *args, **kwargs):
result = prediction(...) # Call your custom service and got result
# Return the result as JSON (url = /api/v1/predictions/1) an object
return Response({'data': result}, status=status.HTTP_200_OK)
def list(self, request, *args, **kwargs):
result = prediction(...) # Call your custom service and got result
# Return the result as JSON (url = /api/v1/predictions) a list of objects
return Response({'data': result}, status=status.HTTP_200_OK)
Для получения более подробной информации перейдите по этой ссылке