Поля модели, специфичные для PostgreSQL¶
Все эти поля доступны из модуля django.contrib.postgres.fields
.
Индексирование этих полей¶
Index
и Field.db_index
создают индекс B-дерева, который не особенно полезен при запросах к сложным типам данных. Такие индексы, как GinIndex
и GistIndex
, подходят лучше, хотя выбор индекса зависит от запросов, которые вы используете. В целом, GiST может быть хорошим выбором для range fields и HStoreField
, а GIN может быть полезен для ArrayField
.
ArrayField
¶
-
class
ArrayField
(base_field, size=None, **options)[исходный код]¶ Поле для хранения списков данных. Можно использовать большинство типов полей, при этом в качестве
base_field
передается другой экземпляр поля. Вы также можете указатьsize
.ArrayField
могут быть вложенными для хранения многомерных массивов.Если вы задаете полю значение
default
, убедитесь, что это вызываемая переменная, такая какlist
(для пустого значения по умолчанию) или вызываемая переменная, возвращающая список (например, функция). Неправильное использованиеdefault=[]
создает изменяемое значение по умолчанию, которое разделяется между всеми экземплярамиArrayField
.-
base_field
¶ Это необходимый аргумент.
Определяет базовый тип данных и поведение массива. Это должен быть экземпляр подкласса
Field
. Например, это может бытьIntegerField
илиCharField
. Большинство типов полей разрешены, за исключением тех, которые работают с реляционными данными (ForeignKey
,OneToOneField
иManyToManyField
) и файловыми полями (FileField
иImageField
).Возможно вложение полей массива - вы можете указать экземпляр
ArrayField
в качествеbase_field
. Например:from django.contrib.postgres.fields import ArrayField from django.db import models class ChessBoard(models.Model): board = ArrayField( ArrayField( models.CharField(max_length=10, blank=True), size=8, ), size=8, )
Преобразование значений между базой данных и моделью, проверка данных и конфигурации, а также сериализация - все это делегируется базовому полю.
-
size
¶ Это необязательный аргумент.
Если этот параметр передан, массив будет иметь максимальный размер, как указано. Это значение будет передано в базу данных, хотя в настоящее время PostgreSQL не применяет это ограничение.
-
Примечание
При вложении ArrayField
, независимо от того, используете вы параметр size
или нет, PostgreSQL требует, чтобы массивы были прямоугольными:
from django.contrib.postgres.fields import ArrayField
from django.db import models
class Board(models.Model):
pieces = ArrayField(ArrayField(models.IntegerField()))
# Valid
Board(pieces=[
[2, 3],
[2, 1],
])
# Not valid
Board(pieces=[
[2, 3],
[2],
])
Если требуются неправильные формы, то базовое поле следует сделать нулевым, а значения дополнить символом None
.
Запрос ArrayField
¶
Для ArrayField
существует ряд пользовательских поисков и преобразований. Мы будем использовать следующий пример модели:
from django.contrib.postgres.fields import ArrayField
from django.db import models
class Post(models.Model):
name = models.CharField(max_length=200)
tags = ArrayField(models.CharField(max_length=200), blank=True)
def __str__(self):
return self.name
contains
¶
Поиск contains
переопределяется на ArrayField
. Возвращаемыми объектами будут те, в которых переданные значения являются подмножеством данных. Используется оператор SQL @>
. Например:
>>> Post.objects.create(name='First post', tags=['thoughts', 'django'])
>>> Post.objects.create(name='Second post', tags=['thoughts'])
>>> Post.objects.create(name='Third post', tags=['tutorial', 'django'])
>>> Post.objects.filter(tags__contains=['thoughts'])
<QuerySet [<Post: First post>, <Post: Second post>]>
>>> Post.objects.filter(tags__contains=['django'])
<QuerySet [<Post: First post>, <Post: Third post>]>
>>> Post.objects.filter(tags__contains=['django', 'thoughts'])
<QuerySet [<Post: First post>]>
contained_by
¶
Это обратный вариант поиска contains
- возвращаются объекты, данные которых являются подмножеством переданных значений. В нем используется оператор SQL <@
. Например:
>>> Post.objects.create(name='First post', tags=['thoughts', 'django'])
>>> Post.objects.create(name='Second post', tags=['thoughts'])
>>> Post.objects.create(name='Third post', tags=['tutorial', 'django'])
>>> Post.objects.filter(tags__contained_by=['thoughts', 'django'])
<QuerySet [<Post: First post>, <Post: Second post>]>
>>> Post.objects.filter(tags__contained_by=['thoughts', 'django', 'tutorial'])
<QuerySet [<Post: First post>, <Post: Second post>, <Post: Third post>]>
overlap
¶
Возвращает объекты, в которых данные разделяют любые результаты с переданными значениями. Использует оператор SQL &&
. Например:
>>> Post.objects.create(name='First post', tags=['thoughts', 'django'])
>>> Post.objects.create(name='Second post', tags=['thoughts'])
>>> Post.objects.create(name='Third post', tags=['tutorial', 'django'])
>>> Post.objects.filter(tags__overlap=['thoughts'])
<QuerySet [<Post: First post>, <Post: Second post>]>
>>> Post.objects.filter(tags__overlap=['thoughts', 'tutorial'])
<QuerySet [<Post: First post>, <Post: Second post>, <Post: Third post>]>
len
¶
Возвращает длину массива. После этого доступны поиски, доступные для IntegerField
. Например:
>>> Post.objects.create(name='First post', tags=['thoughts', 'django'])
>>> Post.objects.create(name='Second post', tags=['thoughts'])
>>> Post.objects.filter(tags__len=1)
<QuerySet [<Post: Second post>]>
Преобразования индексов¶
Index преобразует индекс в массив. Можно использовать любое неотрицательное целое число. Ошибки нет, если оно превышает size
массива. После преобразования доступны поиски из массива base_field
. Например:
>>> Post.objects.create(name='First post', tags=['thoughts', 'django'])
>>> Post.objects.create(name='Second post', tags=['thoughts'])
>>> Post.objects.filter(tags__0='thoughts')
<QuerySet [<Post: First post>, <Post: Second post>]>
>>> Post.objects.filter(tags__1__iexact='Django')
<QuerySet [<Post: First post>]>
>>> Post.objects.filter(tags__276='javascript')
<QuerySet []>
Примечание
PostgreSQL использует индексацию на основе 1 для полей массива при написании необработанного SQL. Однако эти индексы и индексы, используемые в slices
, используют индексацию на основе 0, чтобы соответствовать Python.
Преобразования срезов¶
Преобразования среза берут срез массива. Можно использовать любые два неотрицательных целых числа, разделенных одним знаком подчеркивания. Поиск, доступный после преобразования, не изменяется. Например:
>>> Post.objects.create(name='First post', tags=['thoughts', 'django'])
>>> Post.objects.create(name='Second post', tags=['thoughts'])
>>> Post.objects.create(name='Third post', tags=['django', 'python', 'thoughts'])
>>> Post.objects.filter(tags__0_1=['thoughts'])
<QuerySet [<Post: First post>, <Post: Second post>]>
>>> Post.objects.filter(tags__0_2__contains=['thoughts'])
<QuerySet [<Post: First post>, <Post: Second post>]>
Примечание
PostgreSQL использует индексацию на основе 1 для полей массива при написании необработанного SQL. Однако эти срезы и срезы, используемые в indexes
, используют индексацию на основе 0, чтобы соответствовать Python.
Многомерные массивы с индексами и срезами
PostgreSQL имеет довольно эзотерическое поведение при использовании индексов и срезов на многомерных массивах. Использование индексов для достижения конечных базовых данных всегда будет работать, но большинство других срезов ведут себя странно на уровне базы данных и не могут поддерживаться логически последовательным образом в Django.
CIText
поля¶
-
class
CIText
(**options)[исходный код]¶ Миксин для создания нечувствительных к регистру текстовых полей, поддерживаемых типом citext. Перед использованием прочитайте о the performance considerations.
Чтобы использовать
citext
, используйте операциюCITextExtension
для set up the citext extension в PostgreSQL перед первой операцией миграцииCreateModel
.Если вы используете
ArrayField
полейCIText
, вы должны добавить'django.contrib.postgres'
в вашиINSTALLED_APPS
, иначе значения полей будут отображаться как строки типа'{thoughts,django}'
.Предоставляется несколько полей, использующих миксин:
-
class
CICharField
(**options)[исходный код]¶
-
class
CIEmailField
(**options)[исходный код]¶
-
class
CITextField
(**options)[исходный код]¶ Эти поля являются подклассами
CharField
,EmailField
иTextField
, соответственно.max_length
не будет применяться в базе данных, посколькуcitext
ведет себя аналогично типу PostgreSQLtext
.
Нечувствительные к регистру коллизии
На PostgreSQL 12+ предпочтительнее использовать недетерминированные колляции вместо расширения citext
. Вы можете создать их с помощью операции миграции CreateCollation
. Для получения дополнительной информации смотрите Управление коллациями с помощью миграций и документацию PostgreSQL о non-deterministic collations.
HStoreField
¶
-
class
HStoreField
(**options)[исходный код]¶ Поле для хранения пар ключ-значение. Используемый тип данных в Python -
dict
. Ключи должны быть строками, а значения могут быть либо строками, либо нулями (None
в Python).Чтобы использовать это поле, вам необходимо:
- Добавьте
'django.contrib.postgres'
в вашINSTALLED_APPS
. - Set up the hstore extension в PostgreSQL.
Вы увидите ошибку типа
can't adapt type 'dict'
, если пропустите первый шаг, илиtype "hstore" does not exist
, если пропустите второй.- Добавьте
Примечание
В некоторых случаях может быть полезно потребовать или ограничить ключи, которые действительны для данного поля. Это можно сделать с помощью функции KeysValidator
.
Запрос HStoreField
¶
В дополнение к возможности запроса по ключу, для HStoreField
доступен ряд пользовательских поисков.
Мы будем использовать следующий пример модели:
from django.contrib.postgres.fields import HStoreField
from django.db import models
class Dog(models.Model):
name = models.CharField(max_length=200)
data = HStoreField()
def __str__(self):
return self.name
Поиск ключей¶
Чтобы сделать запрос на основе заданного ключа, можно использовать этот ключ в качестве имени поиска:
>>> Dog.objects.create(name='Rufus', data={'breed': 'labrador'})
>>> Dog.objects.create(name='Meg', data={'breed': 'collie'})
>>> Dog.objects.filter(data__breed='collie')
<QuerySet [<Dog: Meg>]>
После поиска ключа можно выполнить цепочку других поисков:
>>> Dog.objects.filter(data__breed__contains='l')
<QuerySet [<Dog: Rufus>, <Dog: Meg>]>
или использовать выражения F()
для аннотирования значения ключа. Например:
>>> from django.db.models import F
>>> rufus = Dog.objects.annotate(breed=F("data__breed"))[0]
>>> rufus.breed
'labrador'
Если ключ, по которому вы хотите сделать запрос, не совпадает с именем другого поиска, вместо него нужно использовать поиск hstorefield.contains
.
Примечание
Ключевые преобразования также могут быть соединены в цепочку с: contains
, icontains
, endswith
, iendswith
, iexact
, regex
, iregex
, startswith
и istartswith
.
Предупреждение
Поскольку любая строка может быть ключом в значении hstore, любой поиск, кроме перечисленных ниже, будет интерпретироваться как поиск ключа. Никаких ошибок при этом не возникает. Будьте предельно внимательны к опечаткам и всегда проверяйте, что ваши запросы работают так, как вы задумали.
contains
¶
Поиск contains
переопределяется на HStoreField
. Возвращаемыми объектами являются те, в которых заданные dict
> пары ключ-значение все содержатся в поле. Используется оператор SQL @>
. Например:
>>> Dog.objects.create(name='Rufus', data={'breed': 'labrador', 'owner': 'Bob'})
>>> Dog.objects.create(name='Meg', data={'breed': 'collie', 'owner': 'Bob'})
>>> Dog.objects.create(name='Fred', data={})
>>> Dog.objects.filter(data__contains={'owner': 'Bob'})
<QuerySet [<Dog: Rufus>, <Dog: Meg>]>
>>> Dog.objects.filter(data__contains={'breed': 'collie'})
<QuerySet [<Dog: Meg>]>
contained_by
¶
Это обратный вариант поиска contains
- возвращаются те объекты, в которых пары ключ-значение объекта являются подмножеством пар в переданном значении. Здесь используется оператор SQL <@
. Например:
>>> Dog.objects.create(name='Rufus', data={'breed': 'labrador', 'owner': 'Bob'})
>>> Dog.objects.create(name='Meg', data={'breed': 'collie', 'owner': 'Bob'})
>>> Dog.objects.create(name='Fred', data={})
>>> Dog.objects.filter(data__contained_by={'breed': 'collie', 'owner': 'Bob'})
<QuerySet [<Dog: Meg>, <Dog: Fred>]>
>>> Dog.objects.filter(data__contained_by={'breed': 'collie'})
<QuerySet [<Dog: Fred>]>
has_key
¶
Возвращает объекты, в данных которых находится заданный ключ. Использует оператор SQL ?
. Например:
>>> Dog.objects.create(name='Rufus', data={'breed': 'labrador'})
>>> Dog.objects.create(name='Meg', data={'breed': 'collie', 'owner': 'Bob'})
>>> Dog.objects.filter(data__has_key='owner')
<QuerySet [<Dog: Meg>]>
has_any_keys
¶
Возвращает объекты, в данных которых есть любой из заданных ключей. Использует оператор SQL ?|
. Например:
>>> Dog.objects.create(name='Rufus', data={'breed': 'labrador'})
>>> Dog.objects.create(name='Meg', data={'owner': 'Bob'})
>>> Dog.objects.create(name='Fred', data={})
>>> Dog.objects.filter(data__has_any_keys=['owner', 'breed'])
<QuerySet [<Dog: Rufus>, <Dog: Meg>]>
has_keys
¶
Возвращает объекты, в данных которых есть все заданные ключи. Использует оператор SQL ?&
. Например:
>>> Dog.objects.create(name='Rufus', data={})
>>> Dog.objects.create(name='Meg', data={'breed': 'collie', 'owner': 'Bob'})
>>> Dog.objects.filter(data__has_keys=['breed', 'owner'])
<QuerySet [<Dog: Meg>]>
keys
¶
Возвращает объекты, где массив ключей является заданным значением. Обратите внимание, что порядок не гарантируется, поэтому это преобразование полезно использовать в основном в сочетании с поиском по ArrayField
. Использует SQL-функцию akeys()
. Например:
>>> Dog.objects.create(name='Rufus', data={'toy': 'bone'})
>>> Dog.objects.create(name='Meg', data={'breed': 'collie', 'owner': 'Bob'})
>>> Dog.objects.filter(data__keys__overlap=['breed', 'toy'])
<QuerySet [<Dog: Rufus>, <Dog: Meg>]>
values
¶
Возвращает объекты, где массив значений является заданным значением. Обратите внимание, что порядок не гарантируется, поэтому это преобразование полезно использовать в основном в сочетании с поиском по ArrayField
. Использует SQL-функцию avals()
. Например:
>>> Dog.objects.create(name='Rufus', data={'breed': 'labrador'})
>>> Dog.objects.create(name='Meg', data={'breed': 'collie', 'owner': 'Bob'})
>>> Dog.objects.filter(data__values__contains=['collie'])
<QuerySet [<Dog: Meg>]>
Поля диапазона¶
Существует пять типов полей диапазона, соответствующих встроенным типам диапазонов в PostgreSQL. Эти поля используются для хранения диапазона значений; например, временные метки начала и окончания события или диапазон возрастов, для которых подходит то или иное мероприятие.
Все поля диапазона переводятся в psycopg2 Range objects в Python, но также принимают кортежи в качестве входных данных, если информация о границах не требуется. По умолчанию нижняя граница включена, верхняя исключена, то есть [)
(подробности о different bounds см. в документации PostgreSQL). Для полей недискретного диапазона (DateTimeRangeField
и DecimalRangeField
) границы по умолчанию могут быть изменены с помощью аргумента default_bounds
.
IntegerRangeField
¶
-
class
IntegerRangeField
(**options)[исходный код]¶ Хранит диапазон целых чисел. Основан на значении
IntegerField
. Представляется символомint4range
в базе данных иNumericRange
в Python.Независимо от границ, указанных при сохранении данных, PostgreSQL всегда возвращает диапазон в канонической форме, которая включает нижнюю границу и исключает верхнюю, то есть
[)
.
BigIntegerRangeField
¶
-
class
BigIntegerRangeField
(**options)[исходный код]¶ Хранит диапазон больших целых чисел. Основан на
BigIntegerField
. Представляется символомint8range
в базе данных иNumericRange
в Python.Независимо от границ, указанных при сохранении данных, PostgreSQL всегда возвращает диапазон в канонической форме, которая включает нижнюю границу и исключает верхнюю, то есть
[)
.
DecimalRangeField
¶
-
class
DecimalRangeField
(default_bounds='[)', **options)[исходный код]¶ Хранит диапазон значений с плавающей точкой. Основан на значении
DecimalField
. Представляется символомnumrange
в базе данных иNumericRange
в Python.-
default_bounds
¶ - New in Django 4.1.
Необязательно. Значение
bounds
для входов списков и кортежей. По умолчанию нижняя граница включена, верхняя исключена, то есть[)
(подробности о different bounds см. в документации PostgreSQL).default_bounds
не используется для входовNumericRange
.
-
DateTimeRangeField
¶
-
class
DateTimeRangeField
(default_bounds='[)', **options)[исходный код]¶ Хранит диапазон временных меток. Основан на значении
DateTimeField
. Представляется символомtstzrange
в базе данных иDateTimeTZRange
в Python.-
default_bounds
¶ - New in Django 4.1.
Необязательно. Значение
bounds
для входов списков и кортежей. По умолчанию нижняя граница включена, верхняя исключена, то есть[)
(подробности о different bounds см. в документации PostgreSQL).default_bounds
не используется для входовDateTimeTZRange
.
-
DateRangeField
¶
-
class
DateRangeField
(**options)[исходный код]¶ Хранит диапазон дат. Основан на значении
DateField
. Представляется символомdaterange
в базе данных иDateRange
в Python.Независимо от границ, указанных при сохранении данных, PostgreSQL всегда возвращает диапазон в канонической форме, которая включает нижнюю границу и исключает верхнюю, то есть
[)
.
Запрос полей диапазона¶
Для полей диапазона существует ряд пользовательских поисков и преобразований. Они доступны для всех вышеперечисленных полей, но мы будем использовать следующий пример модели:
from django.contrib.postgres.fields import IntegerRangeField
from django.db import models
class Event(models.Model):
name = models.CharField(max_length=200)
ages = IntegerRangeField()
start = models.DateTimeField()
def __str__(self):
return self.name
Мы также будем использовать следующие примеры объектов:
>>> import datetime
>>> from django.utils import timezone
>>> now = timezone.now()
>>> Event.objects.create(name='Soft play', ages=(0, 10), start=now)
>>> Event.objects.create(name='Pub trip', ages=(21, None), start=now - datetime.timedelta(days=1))
и NumericRange
:
>>> from psycopg2.extras import NumericRange
Функции сдерживания¶
Как и для других полей PostgreSQL, существует три стандартных оператора сдерживания: contains
, contained_by
и overlap
, использующие операторы SQL @>
, <@
и &&
соответственно.
contains
¶
>>> Event.objects.filter(ages__contains=NumericRange(4, 5))
<QuerySet [<Event: Soft play>]>
contained_by
¶
>>> Event.objects.filter(ages__contained_by=NumericRange(0, 15))
<QuerySet [<Event: Soft play>]>
Поиск contained_by
также доступен для недиапазонных типов полей: SmallAutoField
, AutoField
, BigAutoField
, SmallIntegerField
, IntegerField
, BigIntegerField
, DecimalField
, FloatField
, DateField
и DateTimeField
. Например:
>>> from psycopg2.extras import DateTimeTZRange
>>> Event.objects.filter(
... start__contained_by=DateTimeTZRange(
... timezone.now() - datetime.timedelta(hours=1),
... timezone.now() + datetime.timedelta(hours=1),
... ),
... )
<QuerySet [<Event: Soft play>]>
overlap
¶
>>> Event.objects.filter(ages__overlap=NumericRange(8, 12))
<QuerySet [<Event: Soft play>]>
Функции сравнения¶
Поля диапазона поддерживают стандартный поиск: lt
, gt
, lte
и gte
. Они не особенно полезны - сначала сравниваются нижние границы, а затем, при необходимости, верхние. Эта же стратегия используется для упорядочивания по полю диапазона. Лучше использовать специальные операторы сравнения диапазонов.
fully_lt
¶
Возвращенный диапазон строго меньше переданного диапазона. Другими словами, все точки в возвращаемом диапазоне меньше, чем все точки в передаваемом диапазоне.
>>> Event.objects.filter(ages__fully_lt=NumericRange(11, 15))
<QuerySet [<Event: Soft play>]>
fully_gt
¶
Возвращенный диапазон строго больше переданного диапазона. Другими словами, все точки в возвращаемом диапазоне больше, чем все точки в передаваемом диапазоне.
>>> Event.objects.filter(ages__fully_gt=NumericRange(11, 15))
<QuerySet [<Event: Pub trip>]>
not_lt
¶
Возвращаемые диапазоны не содержат точек меньше, чем переданный диапазон, то есть нижняя граница возвращаемого диапазона не меньше нижней границы переданного диапазона.
>>> Event.objects.filter(ages__not_lt=NumericRange(0, 15))
<QuerySet [<Event: Soft play>, <Event: Pub trip>]>
not_gt
¶
Возвращаемые диапазоны не содержат точек, превышающих переданный диапазон, то есть верхняя граница возвращаемого диапазона не более верхней границы переданного диапазона.
>>> Event.objects.filter(ages__not_gt=NumericRange(3, 10))
<QuerySet [<Event: Soft play>]>
adjacent_to
¶
Возвращаемые диапазоны имеют общую границу с переданным диапазоном.
>>> Event.objects.filter(ages__adjacent_to=NumericRange(10, 21))
<QuerySet [<Event: Soft play>, <Event: Pub trip>]>
Запрос с использованием границ¶
Поля диапазона поддерживают несколько дополнительных поисков.
startswith
¶
Возвращаемые объекты имеют заданную нижнюю границу. Могут быть соединены в цепочку с действительными поисками для базового поля.
>>> Event.objects.filter(ages__startswith=21)
<QuerySet [<Event: Pub trip>]>
endswith
¶
Возвращаемые объекты имеют заданную верхнюю границу. Могут быть соединены в цепочку с действительными поисками для базового поля.
>>> Event.objects.filter(ages__endswith=10)
<QuerySet [<Event: Soft play>]>
isempty
¶
Возвращаемые объекты - пустые диапазоны. Может быть соединен в цепочку с действительными поисками для BooleanField
.
>>> Event.objects.filter(ages__isempty=True)
<QuerySet []>
lower_inc
¶
Возвращает объекты, которые имеют включающие или исключающие нижние границы, в зависимости от переданного булева значения. Может быть соединен в цепочку с действительными поисками для BooleanField
.
>>> Event.objects.filter(ages__lower_inc=True)
<QuerySet [<Event: Soft play>, <Event: Pub trip>]>
lower_inf
¶
Возвращает объекты, имеющие беспредельную (бесконечную) или ограниченную нижнюю границу, в зависимости от переданного булева значения. Может быть соединен в цепочку с действительными поисками для BooleanField
.
>>> Event.objects.filter(ages__lower_inf=True)
<QuerySet []>
upper_inc
¶
Возвращает объекты, которые имеют включающие или исключающие верхние границы, в зависимости от переданного булева значения. Может быть соединен в цепочку с действительными поисками для BooleanField
.
>>> Event.objects.filter(ages__upper_inc=True)
<QuerySet []>
upper_inf
¶
Возвращает объекты, которые имеют неограниченную (бесконечную) или ограниченную верхнюю границу, в зависимости от переданного булева значения. Может быть соединен в цепочку с действительными поисками для BooleanField
.
>>> Event.objects.filter(ages__upper_inf=True)
<QuerySet [<Event: Pub trip>]>
Определение собственных типов диапазонов¶
PostgreSQL позволяет определять пользовательские типы диапазонов. Реализации модели и поля формы Django используют базовые классы, приведенные ниже, а psycopg2 предоставляет register_range()
для разрешения использования пользовательских типов диапазонов.
-
class
RangeField
(**options)[исходный код]¶ Базовый класс для полей модельного ряда.
-
base_field
¶ Класс поля модели для использования.
-
range_type
¶ Используемый тип диапазона psycopg2.
-
form_field
¶ Используемый класс поля формы. Должен быть подклассом
django.contrib.postgres.forms.BaseRangeField
.
-
Операторы диапазона¶
-
class
RangeOperators
[исходный код]¶
PostgreSQL предоставляет набор операторов SQL, которые можно использовать вместе с типами данных range (см. the PostgreSQL documentation for the full details of range operators). Этот класс предназначен для того, чтобы избежать опечаток. Имена операторов совпадают с именами соответствующих поисков.
class RangeOperators:
EQUAL = '='
NOT_EQUAL = '<>'
CONTAINS = '@>'
CONTAINED_BY = '<@'
OVERLAPS = '&&'
FULLY_LT = '<<'
FULLY_GT = '>>'
NOT_LT = '&>'
NOT_GT = '&<'
ADJACENT_TO = '-|-'
Выражения RangeBoundary()¶
-
class
RangeBoundary
(inclusive_lower=True, inclusive_upper=False)[исходный код]¶ -
inclusive_lower
¶ Если
True
(по умолчанию), то нижняя граница будет инклюзивной'['
, иначе - эксклюзивной'('
.
-
inclusive_upper
¶ Если
False
(по умолчанию), то верхняя граница - эксклюзивная')'
, иначе - инклюзивная']'
.
-
Выражение RangeBoundary()
представляет границы диапазона. Его можно использовать с пользовательскими функциями диапазона, которые ожидают границы, например, для определения ExclusionConstraint
. См. the PostgreSQL documentation for the full details.