"""Schedules define the intervals at which periodic tasks run."""
import numbers
import re
from bisect import bisect, bisect_left
from collections import namedtuple
from collections.abc import Iterable
from datetime import datetime, timedelta
from kombu.utils.objects import cached_property
from . import current_app
from .utils.collections import AttributeDict
from .utils.time import (ffwd, humanize_seconds, localize, maybe_make_aware,
maybe_timedelta, remaining, timezone, weekday)
__all__ = (
'ParseException', 'schedule', 'crontab', 'crontab_parser',
'maybe_schedule', 'solar',
)
schedstate = namedtuple('schedstate', ('is_due', 'next'))
CRON_PATTERN_INVALID = """\
Invalid crontab pattern. Valid range is {min}-{max}. \
'{value}' was found.\
"""
CRON_INVALID_TYPE = """\
Argument cronspec needs to be of any of the following types: \
int, str, or an iterable type. {type!r} was given.\
"""
CRON_REPR = """\
<crontab: {0._orig_minute} {0._orig_hour} {0._orig_day_of_week} \
{0._orig_day_of_month} {0._orig_month_of_year} (m/h/d/dM/MY)>\
"""
SOLAR_INVALID_LATITUDE = """\
Argument latitude {lat} is invalid, must be between -90 and 90.\
"""
SOLAR_INVALID_LONGITUDE = """\
Argument longitude {lon} is invalid, must be between -180 and 180.\
"""
SOLAR_INVALID_EVENT = """\
Argument event "{event}" is invalid, must be one of {all_events}.\
"""
def cronfield(s):
return '*' if s is None else s
[docs]class ParseException(Exception):
"""Raised by :class:`crontab_parser` when the input can't be parsed."""
class BaseSchedule:
def __init__(self, nowfun=None, app=None):
self.nowfun = nowfun
self._app = app
def now(self):
return (self.nowfun or self.app.now)()
def remaining_estimate(self, last_run_at):
raise NotImplementedError()
def is_due(self, last_run_at):
raise NotImplementedError()
def maybe_make_aware(self, dt):
return maybe_make_aware(dt, self.tz)
@property
def app(self):
return self._app or current_app._get_current_object()
@app.setter # noqa
def app(self, app):
self._app = app
@cached_property
def tz(self):
return self.app.timezone
@cached_property
def utc_enabled(self):
return self.app.conf.enable_utc
def to_local(self, dt):
if not self.utc_enabled:
return timezone.to_local_fallback(dt)
return dt
def __eq__(self, other):
if isinstance(other, BaseSchedule):
return other.nowfun == self.nowfun
return NotImplemented
[docs]class schedule(BaseSchedule):
"""Schedule for periodic task.
Arguments:
run_every (float, ~datetime.timedelta): Time interval.
relative (bool): If set to True the run time will be rounded to the
resolution of the interval.
nowfun (Callable): Function returning the current date and time
(:class:`~datetime.datetime`).
app (Celery): Celery app instance.
"""
relative = False
def __init__(self, run_every=None, relative=False, nowfun=None, app=None):
self.run_every = maybe_timedelta(run_every)
self.relative = relative
super().__init__(nowfun=nowfun, app=app)
[docs] def remaining_estimate(self, last_run_at):
return remaining(
self.maybe_make_aware(last_run_at), self.run_every,
self.maybe_make_aware(self.now()), self.relative,
)
[docs] def is_due(self, last_run_at):
"""Return tuple of ``(is_due, next_time_to_check)``.
Notes:
- next time to check is in seconds.
- ``(True, 20)``, means the task should be run now, and the next
time to check is in 20 seconds.
- ``(False, 12.3)``, means the task is not due, but that the
scheduler should check again in 12.3 seconds.
The next time to check is used to save energy/CPU cycles,
it does not need to be accurate but will influence the precision
of your schedule. You must also keep in mind
the value of :setting:`beat_max_loop_interval`,
that decides the maximum number of seconds the scheduler can
sleep between re-checking the periodic task intervals. So if you
have a task that changes schedule at run-time then your next_run_at
check will decide how long it will take before a change to the
schedule takes effect. The max loop interval takes precedence
over the next check at value returned.
.. admonition:: Scheduler max interval variance
The default max loop interval may vary for different schedulers.
For the default scheduler the value is 5 minutes, but for example
the :pypi:`django-celery-beat` database scheduler the value
is 5 seconds.
"""
last_run_at = self.maybe_make_aware(last_run_at)
rem_delta = self.remaining_estimate(last_run_at)
remaining_s = max(rem_delta.total_seconds(), 0)
if remaining_s == 0:
return schedstate(is_due=True, next=self.seconds)
return schedstate(is_due=False, next=remaining_s)
def __repr__(self):
return f'<freq: {self.human_seconds}>'
def __eq__(self, other):
if isinstance(other, schedule):
return self.run_every == other.run_every
return self.run_every == other
def __ne__(self, other):
return not self.__eq__(other)
def __reduce__(self):
return self.__class__, (self.run_every, self.relative, self.nowfun)
@property
def seconds(self):
return max(self.run_every.total_seconds(), 0)
@property
def human_seconds(self):
return humanize_seconds(self.seconds)
[docs]class crontab_parser:
"""Parser for Crontab expressions.
Any expression of the form 'groups'
(see BNF grammar below) is accepted and expanded to a set of numbers.
These numbers represent the units of time that the Crontab needs to
run on:
.. code-block:: bnf
digit :: '0'..'9'
dow :: 'a'..'z'
number :: digit+ | dow+
steps :: number
range :: number ( '-' number ) ?
numspec :: '*' | range
expr :: numspec ( '/' steps ) ?
groups :: expr ( ',' expr ) *
The parser is a general purpose one, useful for parsing hours, minutes and
day of week expressions. Example usage:
.. code-block:: pycon
>>> minutes = crontab_parser(60).parse('*/15')
[0, 15, 30, 45]
>>> hours = crontab_parser(24).parse('*/4')
[0, 4, 8, 12, 16, 20]
>>> day_of_week = crontab_parser(7).parse('*')
[0, 1, 2, 3, 4, 5, 6]
It can also parse day of month and month of year expressions if initialized
with a minimum of 1. Example usage:
.. code-block:: pycon
>>> days_of_month = crontab_parser(31, 1).parse('*/3')
[1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31]
>>> months_of_year = crontab_parser(12, 1).parse('*/2')
[1, 3, 5, 7, 9, 11]
>>> months_of_year = crontab_parser(12, 1).parse('2-12/2')
[2, 4, 6, 8, 10, 12]
The maximum possible expanded value returned is found by the formula:
:math:`max_ + min_ - 1`
"""
ParseException = ParseException
_range = r'(\w+?)-(\w+)'
_steps = r'/(\w+)?'
_star = r'\*'
def __init__(self, max_=60, min_=0):
self.max_ = max_
self.min_ = min_
self.pats = (
(re.compile(self._range + self._steps), self._range_steps),
(re.compile(self._range), self._expand_range),
(re.compile(self._star + self._steps), self._star_steps),
(re.compile('^' + self._star + '$'), self._expand_star),
)
[docs] def parse(self, spec):
acc = set()
for part in spec.split(','):
if not part:
raise self.ParseException('empty part')
acc |= set(self._parse_part(part))
return acc
def _parse_part(self, part):
for regex, handler in self.pats:
m = regex.match(part)
if m:
return handler(m.groups())
return self._expand_range((part,))
def _expand_range(self, toks):
fr = self._expand_number(toks[0])
if len(toks) > 1:
to = self._expand_number(toks[1])
if to < fr: # Wrap around max_ if necessary
return (list(range(fr, self.min_ + self.max_)) +
list(range(self.min_, to + 1)))
return list(range(fr, to + 1))
return [fr]
def _range_steps(self, toks):
if len(toks) != 3 or not toks[2]:
raise self.ParseException('empty filter')
return self._expand_range(toks[:2])[::int(toks[2])]
def _star_steps(self, toks):
if not toks or not toks[0]:
raise self.ParseException('empty filter')
return self._expand_star()[::int(toks[0])]
def _expand_star(self, *args):
return list(range(self.min_, self.max_ + self.min_))
def _expand_number(self, s):
if isinstance(s, str) and s[0] == '-':
raise self.ParseException('negative numbers not supported')
try:
i = int(s)
except ValueError:
try:
i = weekday(s)
except KeyError:
raise ValueError(f'Invalid weekday literal {s!r}.')
max_val = self.min_ + self.max_ - 1
if i > max_val:
raise ValueError(
f'Invalid end range: {i} > {max_val}.')
if i < self.min_:
raise ValueError(
f'Invalid beginning range: {i} < {self.min_}.')
return i
[docs]class crontab(BaseSchedule):
"""Crontab schedule.
A Crontab can be used as the ``run_every`` value of a
periodic task entry to add :manpage:`crontab(5)`-like scheduling.
Like a :manpage:`cron(5)`-job, you can specify units of time of when
you'd like the task to execute. It's a reasonably complete
implementation of :command:`cron`'s features, so it should provide a fair
degree of scheduling needs.
You can specify a minute, an hour, a day of the week, a day of the
month, and/or a month in the year in any of the following formats:
.. attribute:: minute
- A (list of) integers from 0-59 that represent the minutes of
an hour of when execution should occur; or
- A string representing a Crontab pattern. This may get pretty
advanced, like ``minute='*/15'`` (for every quarter) or
``minute='1,13,30-45,50-59/2'``.
.. attribute:: hour
- A (list of) integers from 0-23 that represent the hours of
a day of when execution should occur; or
- A string representing a Crontab pattern. This may get pretty
advanced, like ``hour='*/3'`` (for every three hours) or
``hour='0,8-17/2'`` (at midnight, and every two hours during
office hours).
.. attribute:: day_of_week
- A (list of) integers from 0-6, where Sunday = 0 and Saturday =
6, that represent the days of a week that execution should
occur.
- A string representing a Crontab pattern. This may get pretty
advanced, like ``day_of_week='mon-fri'`` (for weekdays only).
(Beware that ``day_of_week='*/2'`` does not literally mean
'every two days', but 'every day that is divisible by two'!)
.. attribute:: day_of_month
- A (list of) integers from 1-31 that represents the days of the
month that execution should occur.
- A string representing a Crontab pattern. This may get pretty
advanced, such as ``day_of_month='2-30/2'`` (for every even
numbered day) or ``day_of_month='1-7,15-21'`` (for the first and
third weeks of the month).
.. attribute:: month_of_year
- A (list of) integers from 1-12 that represents the months of
the year during which execution can occur.
- A string representing a Crontab pattern. This may get pretty
advanced, such as ``month_of_year='*/3'`` (for the first month
of every quarter) or ``month_of_year='2-12/2'`` (for every even
numbered month).
.. attribute:: nowfun
Function returning the current date and time
(:class:`~datetime.datetime`).
.. attribute:: app
The Celery app instance.
It's important to realize that any day on which execution should
occur must be represented by entries in all three of the day and
month attributes. For example, if ``day_of_week`` is 0 and
``day_of_month`` is every seventh day, only months that begin
on Sunday and are also in the ``month_of_year`` attribute will have
execution events. Or, ``day_of_week`` is 1 and ``day_of_month``
is '1-7,15-21' means every first and third Monday of every month
present in ``month_of_year``.
"""
def __init__(self, minute='*', hour='*', day_of_week='*',
day_of_month='*', month_of_year='*', **kwargs):
self._orig_minute = cronfield(minute)
self._orig_hour = cronfield(hour)
self._orig_day_of_week = cronfield(day_of_week)
self._orig_day_of_month = cronfield(day_of_month)
self._orig_month_of_year = cronfield(month_of_year)
self._orig_kwargs = kwargs
self.hour = self._expand_cronspec(hour, 24)
self.minute = self._expand_cronspec(minute, 60)
self.day_of_week = self._expand_cronspec(day_of_week, 7)
self.day_of_month = self._expand_cronspec(day_of_month, 31, 1)
self.month_of_year = self._expand_cronspec(month_of_year, 12, 1)
super().__init__(**kwargs)
@staticmethod
def _expand_cronspec(cronspec, max_, min_=0):
"""Expand cron specification.
Takes the given cronspec argument in one of the forms:
.. code-block:: text
int (like 7)
str (like '3-5,*/15', '*', or 'monday')
set (like {0,15,30,45}
list (like [8-17])
And convert it to an (expanded) set representing all time unit
values on which the Crontab triggers. Only in case of the base
type being :class:`str`, parsing occurs. (It's fast and
happens only once for each Crontab instance, so there's no
significant performance overhead involved.)
For the other base types, merely Python type conversions happen.
The argument ``max_`` is needed to determine the expansion of
``*`` and ranges. The argument ``min_`` is needed to determine
the expansion of ``*`` and ranges for 1-based cronspecs, such as
day of month or month of year. The default is sufficient for minute,
hour, and day of week.
"""
if isinstance(cronspec, numbers.Integral):
result = {cronspec}
elif isinstance(cronspec, str):
result = crontab_parser(max_, min_).parse(cronspec)
elif isinstance(cronspec, set):
result = cronspec
elif isinstance(cronspec, Iterable):
result = set(cronspec)
else:
raise TypeError(CRON_INVALID_TYPE.format(type=type(cronspec)))
# assure the result does not preceed the min or exceed the max
for number in result:
if number >= max_ + min_ or number < min_:
raise ValueError(CRON_PATTERN_INVALID.format(
min=min_, max=max_ - 1 + min_, value=number))
return result
def _delta_to_next(self, last_run_at, next_hour, next_minute):
"""Find next delta.
Takes a :class:`~datetime.datetime` of last run, next minute and hour,
and returns a :class:`~celery.utils.time.ffwd` for the next
scheduled day and time.
Only called when ``day_of_month`` and/or ``month_of_year``
cronspec is specified to further limit scheduled task execution.
"""
datedata = AttributeDict(year=last_run_at.year)
days_of_month = sorted(self.day_of_month)
months_of_year = sorted(self.month_of_year)
def day_out_of_range(year, month, day):
try:
datetime(year=year, month=month, day=day)
except ValueError:
return True
return False
def is_before_last_run(year, month, day):
return self.maybe_make_aware(datetime(year,
month,
day)) < last_run_at
def roll_over():
for _ in range(2000):
flag = (datedata.dom == len(days_of_month) or
day_out_of_range(datedata.year,
months_of_year[datedata.moy],
days_of_month[datedata.dom]) or
(is_before_last_run(datedata.year,
months_of_year[datedata.moy],
days_of_month[datedata.dom])))
if flag:
datedata.dom = 0
datedata.moy += 1
if datedata.moy == len(months_of_year):
datedata.moy = 0
datedata.year += 1
else:
break
else:
# Tried 2000 times, we're most likely in an infinite loop
raise RuntimeError('unable to rollover, '
'time specification is probably invalid')
if last_run_at.month in self.month_of_year:
datedata.dom = bisect(days_of_month, last_run_at.day)
datedata.moy = bisect_left(months_of_year, last_run_at.month)
else:
datedata.dom = 0
datedata.moy = bisect(months_of_year, last_run_at.month)
if datedata.moy == len(months_of_year):
datedata.moy = 0
roll_over()
while 1:
th = datetime(year=datedata.year,
month=months_of_year[datedata.moy],
day=days_of_month[datedata.dom])
if th.isoweekday() % 7 in self.day_of_week:
break
datedata.dom += 1
roll_over()
return ffwd(year=datedata.year,
month=months_of_year[datedata.moy],
day=days_of_month[datedata.dom],
hour=next_hour,
minute=next_minute,
second=0,
microsecond=0)
def __repr__(self):
return CRON_REPR.format(self)
def __reduce__(self):
return (self.__class__, (self._orig_minute,
self._orig_hour,
self._orig_day_of_week,
self._orig_day_of_month,
self._orig_month_of_year), self._orig_kwargs)
def __setstate__(self, state):
# Calling super's init because the kwargs aren't necessarily passed in
# the same form as they are stored by the superclass
super().__init__(**state)
[docs] def remaining_delta(self, last_run_at, tz=None, ffwd=ffwd):
# pylint: disable=redefined-outer-name
# caching global ffwd
tz = tz or self.tz
last_run_at = self.maybe_make_aware(last_run_at)
now = self.maybe_make_aware(self.now())
dow_num = last_run_at.isoweekday() % 7 # Sunday is day 0, not day 7
execute_this_date = (
last_run_at.month in self.month_of_year and
last_run_at.day in self.day_of_month and
dow_num in self.day_of_week
)
execute_this_hour = (
execute_this_date and
last_run_at.day == now.day and
last_run_at.month == now.month and
last_run_at.year == now.year and
last_run_at.hour in self.hour and
last_run_at.minute < max(self.minute)
)
if execute_this_hour:
next_minute = min(minute for minute in self.minute
if minute > last_run_at.minute)
delta = ffwd(minute=next_minute, second=0, microsecond=0)
else:
next_minute = min(self.minute)
execute_today = (execute_this_date and
last_run_at.hour < max(self.hour))
if execute_today:
next_hour = min(hour for hour in self.hour
if hour > last_run_at.hour)
delta = ffwd(hour=next_hour, minute=next_minute,
second=0, microsecond=0)
else:
next_hour = min(self.hour)
all_dom_moy = (self._orig_day_of_month == '*' and
self._orig_month_of_year == '*')
if all_dom_moy:
next_day = min([day for day in self.day_of_week
if day > dow_num] or self.day_of_week)
add_week = next_day == dow_num
delta = ffwd(
weeks=add_week and 1 or 0,
weekday=(next_day - 1) % 7,
hour=next_hour,
minute=next_minute,
second=0,
microsecond=0,
)
else:
delta = self._delta_to_next(last_run_at,
next_hour, next_minute)
return self.to_local(last_run_at), delta, self.to_local(now)
[docs] def remaining_estimate(self, last_run_at, ffwd=ffwd):
"""Estimate of next run time.
Returns when the periodic task should run next as a
:class:`~datetime.timedelta`.
"""
# pylint: disable=redefined-outer-name
# caching global ffwd
return remaining(*self.remaining_delta(last_run_at, ffwd=ffwd))
[docs] def is_due(self, last_run_at):
"""Return tuple of ``(is_due, next_time_to_run)``.
Note:
Next time to run is in seconds.
SeeAlso:
:meth:`celery.schedules.schedule.is_due` for more information.
"""
rem_delta = self.remaining_estimate(last_run_at)
rem = max(rem_delta.total_seconds(), 0)
due = rem == 0
if due:
rem_delta = self.remaining_estimate(self.now())
rem = max(rem_delta.total_seconds(), 0)
return schedstate(due, rem)
def __eq__(self, other):
if isinstance(other, crontab):
return (
other.month_of_year == self.month_of_year and
other.day_of_month == self.day_of_month and
other.day_of_week == self.day_of_week and
other.hour == self.hour and
other.minute == self.minute and
super().__eq__(other)
)
return NotImplemented
def __ne__(self, other):
res = self.__eq__(other)
if res is NotImplemented:
return True
return not res
[docs]def maybe_schedule(s, relative=False, app=None):
"""Return schedule from number, timedelta, or actual schedule."""
if s is not None:
if isinstance(s, numbers.Number):
s = timedelta(seconds=s)
if isinstance(s, timedelta):
return schedule(s, relative, app=app)
else:
s.app = app
return s
[docs]class solar(BaseSchedule):
"""Solar event.
A solar event can be used as the ``run_every`` value of a
periodic task entry to schedule based on certain solar events.
Notes:
Available event valus are:
- ``dawn_astronomical``
- ``dawn_nautical``
- ``dawn_civil``
- ``sunrise``
- ``solar_noon``
- ``sunset``
- ``dusk_civil``
- ``dusk_nautical``
- ``dusk_astronomical``
Arguments:
event (str): Solar event that triggers this task.
See note for available values.
lat (int): The latitude of the observer.
lon (int): The longitude of the observer.
nowfun (Callable): Function returning the current date and time
as a class:`~datetime.datetime`.
app (Celery): Celery app instance.
"""
_all_events = {
'dawn_astronomical',
'dawn_nautical',
'dawn_civil',
'sunrise',
'solar_noon',
'sunset',
'dusk_civil',
'dusk_nautical',
'dusk_astronomical',
}
_horizons = {
'dawn_astronomical': '-18',
'dawn_nautical': '-12',
'dawn_civil': '-6',
'sunrise': '-0:34',
'solar_noon': '0',
'sunset': '-0:34',
'dusk_civil': '-6',
'dusk_nautical': '-12',
'dusk_astronomical': '18',
}
_methods = {
'dawn_astronomical': 'next_rising',
'dawn_nautical': 'next_rising',
'dawn_civil': 'next_rising',
'sunrise': 'next_rising',
'solar_noon': 'next_transit',
'sunset': 'next_setting',
'dusk_civil': 'next_setting',
'dusk_nautical': 'next_setting',
'dusk_astronomical': 'next_setting',
}
_use_center_l = {
'dawn_astronomical': True,
'dawn_nautical': True,
'dawn_civil': True,
'sunrise': False,
'solar_noon': False,
'sunset': False,
'dusk_civil': True,
'dusk_nautical': True,
'dusk_astronomical': True,
}
def __init__(self, event, lat, lon, **kwargs):
self.ephem = __import__('ephem')
self.event = event
self.lat = lat
self.lon = lon
super().__init__(**kwargs)
if event not in self._all_events:
raise ValueError(SOLAR_INVALID_EVENT.format(
event=event, all_events=', '.join(sorted(self._all_events)),
))
if lat < -90 or lat > 90:
raise ValueError(SOLAR_INVALID_LATITUDE.format(lat=lat))
if lon < -180 or lon > 180:
raise ValueError(SOLAR_INVALID_LONGITUDE.format(lon=lon))
cal = self.ephem.Observer()
cal.lat = str(lat)
cal.lon = str(lon)
cal.elev = 0
cal.horizon = self._horizons[event]
cal.pressure = 0
self.cal = cal
self.method = self._methods[event]
self.use_center = self._use_center_l[event]
def __reduce__(self):
return self.__class__, (self.event, self.lat, self.lon)
def __repr__(self):
return '<solar: {} at latitude {}, longitude: {}>'.format(
self.event, self.lat, self.lon,
)
[docs] def remaining_estimate(self, last_run_at):
"""Return estimate of next time to run.
Returns:
~datetime.timedelta: when the periodic task should
run next, or if it shouldn't run today (e.g., the sun does
not rise today), returns the time when the next check
should take place.
"""
last_run_at = self.maybe_make_aware(last_run_at)
last_run_at_utc = localize(last_run_at, timezone.utc)
self.cal.date = last_run_at_utc
try:
if self.use_center:
next_utc = getattr(self.cal, self.method)(
self.ephem.Sun(),
start=last_run_at_utc, use_center=self.use_center
)
else:
next_utc = getattr(self.cal, self.method)(
self.ephem.Sun(), start=last_run_at_utc
)
except self.ephem.CircumpolarError: # pragma: no cover
# Sun won't rise/set today. Check again tomorrow
# (specifically, after the next anti-transit).
next_utc = (
self.cal.next_antitransit(self.ephem.Sun()) +
timedelta(minutes=1)
)
next = self.maybe_make_aware(next_utc.datetime())
now = self.maybe_make_aware(self.now())
delta = next - now
return delta
[docs] def is_due(self, last_run_at):
"""Return tuple of ``(is_due, next_time_to_run)``.
Note:
next time to run is in seconds.
See Also:
:meth:`celery.schedules.schedule.is_due` for more information.
"""
rem_delta = self.remaining_estimate(last_run_at)
rem = max(rem_delta.total_seconds(), 0)
due = rem == 0
if due:
rem_delta = self.remaining_estimate(self.now())
rem = max(rem_delta.total_seconds(), 0)
return schedstate(due, rem)
def __eq__(self, other):
if isinstance(other, solar):
return (
other.event == self.event and
other.lat == self.lat and
other.lon == self.lon
)
return NotImplemented
def __ne__(self, other):
res = self.__eq__(other)
if res is NotImplemented:
return True
return not res